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1. Summary

In 1993, a, detailed uncertainty analysis of tile six-component strain-gauge balance was

undertaken for the first l,ime in wind t,nnnel tests at the Langley R,esearch (-'ellt, er to provide

confidence and prediction interva[_ of the outputs as functions of the nmasurands instead of using

a general root-mean-square error quantity per coinponent as a percentage of full-scale output.

The success of this effort,, published in 1994 as A1AA-94-258.q, has demonstrated the need for

similar analyses of the other wind tuimel iltst.rumentatioll in u_' at Langley.

The present publicat.ioll dewqops aim documents a generalized _-t, of mathematical tools

m, eded for thorough statistical analyses of instruulenl calibration aml a.pl_licalion. A compre-
hensiw _ unified treatment directed ioward wind tunnel i_Lst.rument ca.lit)ration was not found in

the literature.

2. hltroduction

Aerospace research requires.measurement of basic physical properties such a.s aerodynamic
forces and lllOnlents; strain; skin friction force: model atl.ilude, including pitch, roll, and yaw

angles: trandational position: 1,emperature: pressure; ma.s_-flow rate: and other properties.

The aerospace industry now requires that experimental aerodynamic data be furnished with

uncertainties specified at a statistical confidence level, typically 95 percenl,. This requirenlent,

in turn, imposes the need to quanti_' l.he uncertainty of each lmsic p]]ysical measurement a.t t.he

transducer and instrumenl level in the test facility as a function of the corresponding property

vahle al. the specified confidence ]ew:].

A slanda.rd method for treal,lUellt o[ IlleasllreIllel/t uncertainty in gas t.urt_ine engine perfor-

lllallce l.esting was dewqoped by Abernethy el a.I. (ref. 1). Based on National Bureau of Slan-

dards handbooks. Abernethy _,parated elementary measurement errors into two components:.

precision error, which is a. zero-mean random error due to measuremenl scatter, and bias error,

which is _'stematic and repeatabh' although unpredictable. The uncertainty of a. final computed

para.meter is determined by propagation of individual nleasurenmnt uncertainties through t,hc

functional expressions which define lhe parameter, usually by means of mullivaria.ble Taylor's

series expa_rsiolls. The final t,)ta.l uncertaint.y equals the root-sum-square of the propagat, ed bias

and precision uncertainties.

At_ernet.hy's techniques were extended and formalized into an American National Standard

(ref. 2). Coleman and Steele ( ref. 3) provide a detailed acadenfic development of the standardized

uncertainty analysis specified in reference 2 that includes statistical concepts, experimental

design, the effects of replication, and confidence intervals. Reference 3 also provides practical

details for application of the standard to engineering practice. It im.roducm the concepts of

generalized uncertainty analysis for the conceptual validation of a proposed experimenl, and

detailed uncertainty a.nalysis for processing ext>erimental results of a completed experiment.

The useful concept of "fossilized bias un ce rtainl,y" r(_ult.hlg from the ac<'e pl,ance of calibrat ion

data is introduced.

An international standard for wind tunnel data uncertainty analysis ha,_ been developed by a.n

AGARD worki ng group (ref. 4 ), which provi des a st andardized approa.ch for estilnating I)recision

and bia.s limits, for error propagation conH)ut.ation, and for determining confidence intervals of

the computed results in the wind tmmel testing context. Batill (ref. 5)has applied AGARD

techniques to the data reduction problem at the National Transonic Facility.

The present tmblication extends the analysis of instrumenl calibration uncertainty t)re_sent]y

ad dres,_ed hi t he u nce rt, ainty aualyd s literatu re. Specifically, co rrelated me a.su reme Ill, l)recision

error, ca]ibral, ion standard uncertainties, and correlated calibration st andard bias uncertainties

are cot_sidered. The effects of mathelnatical modeling error on calibration bias uncertainty



arequantified.Statisticaltestsfor detectionof modelingerrorand calibrationstandarderror
throughtile useof replicationaredeveloped.The effectsof experimentaldesignon precision
and biasuncertaintiesarealsoinvestigated.

Measurementuncertaintiesof individual measurementsduringcalibrationandexperimental
t.eslinghaveusuallybeenconsideredto bestatistically independentto facilitatecomputations.
Theextensiw-useof multichannelmultiplexeddataacquisitionsysteniswit]l comulon amplifiers

and analog-to-digital converters introduces correlated measurenienl uncertainties which may 1)e

significant. This publication allows rigorous treatment of correlated nleasurenlent uncertainties
who_ covariance nlatrkx is known.

l)uring calibration, the uncertainties of the calibration standard are generally neglected by

a.ssun)ing that their level is at. lea,st 1 order of magnitude less than that of the instrunlent being

calit)raled. Often cMibralion standards nmst be used whMl do not sat.is_" this assuml, tion. hi

addition for calibration, lhe comnion use of stacked deadweight ]oadiiigs for load cell. strain-

gauge balance, a.nd skin friction balance introduces significant correlated uncertainties that

can lnagni_' the resultant instrunient calibration uncertainty several fold. Similar effects can

occur during calibrat.ion of any instrument with a similar "standard instrulnenl" such as a load

cell or skin friction balance. This publication develop_ the rigorotLs statistical techifiques for

conlputation of calibration standard covariances and their illchision in calculation of ow,rall

instrunlent confidence intervals. These tecliniques have been applied to calibration uncertainly

analysis oft tie six-coull)Onent strain-gauge l)ala.nce as described in reference 6.

Precision erx'ol_ are traditionally viewed as zero-niean ra.ndom variables who_, uncertainties

Call I)e redttced withoui liniit l)y replication as showii t)y the central liniit theorenl (ref. 7).

l lowever, tile ])reselice of sysielllatic bias errors during calibrat io 11Call lead to till realistically low

conipuied standard errors when very large calibration experiniental desigIrs are used. The large

nunil)cr of degrees of freedoul can inadw, rt_qil, ly reduce the portion of the standard error dlle to

bias uncerl.ainly if correlat, ion effects are neglected.

Other specific work is in progress that. applies this analysis to iniportant wind tumiel

illstrunlents, including invarial)le transducers such as load cells and skin friction balances, and

nlult ivariable iran_tucers, including the strain-gauge balance and inertial nlodel attitude sensors.

Other sySlelllS should lle analyzed in the future.

a. hlstrument Modeling and Calibration Experimental Design

llist.rullielits are routinely calibrated by lneaits of anMytical models through the ttse of

multiwtriate regression anMysis to estimate calibration paranieter. To quantify statistical

confidence levels of nieasurenients obtained by a calibrated instrument,, the uncertainty of

predicted Ollt.puls lnttsl, be estilnaled as a function of tile input va.lue through the use of the

analytic niodel.

3.1. General Multivariate Process

A formal mathematical representation of a multivariate (multiple-input) single-output static

process, inchiding stocha.stic components, is presented t,o describe the steady-state input output

relationship for an instrunient. The analysis does not include traltsient effects.

l_t _w,. and ?}_:w,,denote :ll_ and k,I,, dimensional Euclidean spaces, respectively, where !_ is

the set, of real nunibers. Collsider a real-valued nmltivariate function f of M,, x 1 input vector

z E :)i'w', and M,, x 1 paranleter vector c E ?i__w''. Function f niaps the Cartesian product of

spaces ?_,w,. and ?)?:_t,.into the set, of real nunlbers _; thus,

(i)



The notation f(c, z) denotes the outpul value of tile function, all analytic model of a physical

process dependent upon stochastic input vector z and deternfinistic paranwt.er reeler c.

The ol)._rved OUt, pill, .q of the I)rocess is generally a. measuwd voll._tge whose uncertainly 6y

depends upon both the uncert.ahH.y of the applied input _Sz and 1.he uncertahlt.y of the stochastic

process nleasureluent. _/:-, a. zero-mean ra.ndOln variable which is independent of _z. Thus the

observed ollt,p/ll is

y = f(c,z+0z) +<r (2)

where stochastic input w'ctor z has been replaced by the sum of det.erminist.ic vector z plus

stocha.stic input uncertaiI,l.y vector /_z. The purpose of calibration is to eslima.le pa.ranleter

vector c based UpOll multiple observa.tions ()f oul.I)ul y ('orrest_on(ling to a sel of _'lected inl)Ul.s

specified by an _.rl,_r_mcnlal design.

3.2. Single-Input Single-Output Process

An exa.mph _ of a. single-iI,pUl single-output process model in t.erms of a nolllinear i)olylmmia]

using inner-l)ro(luct nol.al.ion is l)ren, nt.ed. Lel. x denol.e a. known applied ilq)ul i() a.n inst.rume|lt;

let ,q (lenole the corresponding ol),_'rw_d output, in elect.rica.1 units, fin' example: and lel <, (lenoW

the lllea,sllrelll(_l|l, error, which is assumed to be a. zero-meau ra.mhml variable with sla.ndard

deviation :r. Often t.he measuren|ent l)ro('_s ca.n be accurately modeled t)y a.n-_/lh degree

polynolnia.1 of lhe fern,

!1= c(, + cl.*" + c.,x" + ... + c_:x _: + _:: (a)

which is _en to be a. sl)('cia.1 cas*' of equa.l.ioll (2). Arranging l.he l)olynomia] coettlcienls illlO

('AI + 1) x 1 vector e giw_s

c = [c. el... c.]* (,t)

Define a.n (M + 1) x 1 input vector z, dcnol.ed tile exlendtd input v(clor, conta.ining the first. M

powers of x as

z(.) = [1 • ,_... _,,]T (:))

Tile ftmctional notation z(x) is used in the subsequent development only when needed for clarity.

Fquation (3) can then be expressed in inner-product form a_s

y = zTc + eF (6)

Note that all, hough t,lw actual process input is _alar variable x, the process model function f
is construcled as a. multivariate linea.r funct, ion of the (M + 1 )th elenwnt inpul vector z which

is, in turn, a nonlinear function of x.

3.3. Linem', Polynomial. mid Nonlinear Multivm'iate Processes

More general nola.tioll suitM)le for representation of linear, polynomia.l, and general nonlinear

multiva.ria.le processes is presented. Consider a. multivariate process with vector x denoting a

1 x N: vector of input variables,
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x = [., ....,,,] (7)

The muhivariat(' process is represented by equation (6) where y is a. linear fllnclion of an Me x 1

extended input vector z represenied by

where 2j =- 1. For a. univartat( linear pro(._ss, the elements of z, generated from inpul variM)lo

x, cQnsis! only of [1 x] T. For a untvartal_ polynomial pmc¢,s,s, veclor z consists of the powers of

a' from degree 0 through M as shown in equal ion (,5). l:'or a multivarialc linear t_roc_ss, vector

z consisls of the independent variM,les z(x) = [1 IIx]T. ];or a multtrariat( polynomial pm(_ss,

vector z contains the powers and cross products of the elements ofx from degree 0 through M

For oxample, if -% = 3, then x = [xl x., a'a]: if M = 2, then M,, = 10: and z(x) is giwm 1>3'

I IT
For a. multivaria((, polynomial process of pow(,r M. the length of z is ('(luM to

(NI + M)!
M, - (10)

N,, ?M ?

For ('xa, mple, for a six-comp orient sirrah-gauge balance modeled t)y a second- degree multi vari a.te

t)olynomial where !\' 1 -- 6 and ill = 2, the length M,, of vector z equals 28; that is, z contains

28 l(,rms. Finally, for a. 9_,cral nonlinear mvllivaviale pmc_.ss, z is ideiltical to inpu( w, ctor x.

3.4. Calibration ExperhnentM Desigm

The ¢J7)evtmenlal de,sign for instrumen( calibration consists of a. set of input values applied

1)y using calibrated input standards for which the instrulnent outputs are observed. The

calibration data set is lLqed t.o estimate the paranmters of the mathem_tt.ica] model. Notation for

rel)resentation of the experimental design and a figure of merit _re in(.roduced.

'lb es)ilnate parameter vector c during cMibration, output y is ob_rved for I\ values of

applied inpul vector z contained in a. representative subs('( _ of input space _t,. Subset ,_q is

seh'ct('d to cow, r the anticipated operating envelope of the instrument. The experimental design,

1) C 3, is id('Mly chosen to minimize the variance of estinla.le(l process output 5r averaged over

:.'_, with parameter vector _"obtained by lea.st-squares estimation. Box and Draper (ref. 8) define

a design figure of merit J a.s the _verage predicted output varimlce over set. 3. normalized by

t,he ntunt)er of calibration points I( and measurement variance _2 to remove the effects due t,o

the nlllnber of points in design D, and measllrelnellt noise. Thus,

i<k
J = (ii)

2 "
o'+-.]._ dx

where a](z) is the predicted output variance ftmction defined later.



After determinationof subsetD C _, constructK x M,. design matrtx Z from the elelnents

x_. G D, where the _:th row of Z equals l,ll(" kth extended input veck)r z(xt.) for k = 1 . .. N a_,_

follows:

V Z(xl)T ]

z(x/,-)*

Arrange file corresponding obserw_d out.put _kalues a.nd tneasurenlent errors into observat.ioll

wwl.or y and nJea.suroment en'or veclor _E, respectively, each ha.ring dimension of ff × 1 a.s

y = [.q, :q_ ....ql,] T (13)

an d

(-E = [_l _I_ ... ,j:]T (14)

where llleasurelllell|, error vec|or _E }la,S zero nl("&l) and f\ × I\ cova,ria, n{'e inal,rL\ _]E. For linear

and polynomial Inodels, equation (6) is extended to a. maJ, rix form for I\ observa_tions with lh{'

help of equations (4) and (12) through (14) a.s

y = Zc + eF, (1,5)

4. Generalized Linear Multivariate Regression Analysis

Multivariate linear regression techniques are developed (r el. 9) for least-squares estimation of

coefficient, vector c in equa.tion (15), denoted by c, where the nma.surement errors are corre]aJed.

Tech n iques are also provided for deternfi nation of confi dellce interval s for E and for c onfi dence

grad prediction intervals for new measurenlents ba._d on the calibrated value of c. Measurenlenl

error covariance matrix _E is a.ssUlned to l)e symmetric, positive definite, a,nd expressible in t.he

fOrlll

_U (16)_]E _--- O'F

where /x x /f ma.trLx U is a known sylnmetric positive definile nla.lrix and c/e is a scalar

to be est.imal,ed. If the /f calibration ob_rvations are uncorrelal.ed, then covariance nmt,rkx

ZE ks diagonal. Otherwise a. linear transformatioll 111usl ])e applied 1o outl)lll veer,or y

t,o diagonatize ZF,, which decorrelates the observations. If lneasurelnelll, error vector e g ks

normally distributed, the (lecorrela.ted ot)servat, ions are independent, a necessa.ry condition for

computation of confidence intervals using chi-square and t-dist, ribut.iolts (ref. 7). Detailed proofs

of the following results are given in the a.pl)endix.
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4.1. Decom_lation of Covarimlce Matrix

A coordinate transformation is applied to observation y which diagonalizes measuremenl

covariance matrix EE. Becau_ matrix U is symmetric and positive defini|c, a nonsingular

malrix P exists such that U can b(, (lecoml)osed into the matrix product as follows:

U = ppT (17)

I)efim' transformed obserw_lion vector v as

v = P-ty

Equalion (15) can now t)e Iransforlned through a ('hangc of ('(_()r(linates into the folk)wing:

(is)

v = P-IZc + e,.

where e,. = P-leF_ The covariance matrLx of v is giwm by

(1_))

Nv = P-1NEP-T = cr_.I (20)

where p-T =-- (p-1)T: there|)y, the elemenls of v are confirmed as uncorrelated (ref. 9).

4.2. Least-Squares Esthnation of Process Parameters

The lea.st-_luares estimaW of coefficient vector e, denoted by fi, is obtained by minimizing

l h(' following inner l)roduct with respect to e:

,b_'t2 = (v - P-Ize)T(v - P-IZe)

= (y -- Zc)TU -I (y -- Zc) (21)

Note that. "q'.s(2equals the residual stun of squares of the multivariate regression on vector v and

that the regression is equivalent to least-squares estimation of e on vector y, weighted by the

inverse of Ineasuremellt uncertainty covariance matrix EE. Define Mz x ill_ weighted moment
matrix Q a._

Q---- zTu-I Z

The lrast-s(tuares estimated coefficient vector _ is obtained a.s

(22)

= Q-IzTU-Iy

The, expected value of? equals c and its covariance matrix is given by

(23)

E_ = a_.Q-' (24)
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DefineK x 1 predicted output vector _ = p-lz_, and define K x 1 residual vector ev by

(25)

where K x K ma.trix Wr_ is defined a.s

W K -- I K - II K (26)

IK is the K x K identity ula.l.rix, and I_K is defined a.s

IlK --= (P-IZ)Q-'(P-1Z)T (27)

Note that _K is synmletric. R,_idual vector e'v has zero exl)ecled value and covariance ma.l rix

_a : O_.W K

The residua.1 sulu of squares ,qxE, old a.ined by minimizal ion of i'qua.tion (21), is defined a.s

_T_ T
,%'._'_: _ _v(.V : _vWK_v (2())

The sta_daTrl error of the regression, defined as

S F = K - M,,
(30)

has expected value £[SF] = cry- and is thus an unbia.sed eslinmte of a,.

5. Confidence and Prediction Intervals

The confidence interval for a. statistical variate, such as 1.he estimated paramel.er vector or

the predicted process oul, t)lll, is a. clo_d interval within which the va.riale is colnl)tll, ed 1,o ]ie a.I

a specified probal)ility or confidenc(' level. ,%_e references 7 and 10 for detailed definitions.

5.1. Cotffi(lence Intervals of Est hnated Parametet_

. _%,/_rr: ks chi-square distributed with K- M.lferror vector e, is normally distrit)ut.ed, then "

degrees of freedon,. It follows that a confidence ellipsoid for estimated coeflicien! vector c al

confidence hwel 1 -a is given by the following inequality:

",2 (31)

where F/j(_) is the _ lewq of the F-distribution with i,j degrees of freedom (ref. 7). The

length and direction of the selniaxes of the ellipmid are determined from the eigenvalues and

eigenvectors, respectively, of matrix Q.



5.2. Calibration Confidence Intervals of Predicted Process Output

The calibratio_ confi&l_c_ interval is tlle closed interval within which a predicted t)rocess

output is compuled to lie based on the calibration uncertainty. Let y(z) denote the l)redicted

scalar Ollti)ul, for arbitrary input w_ctor z 1)ased on estimated parameter w_ctor 7:: thai is

._(z) = zX_: (3:2)

The expected value of._(z) equals zTc and its variance is give,, by the following quadratic form:

_(z) = 4 zTq :'z (aa)

Equai ion (33) equals the varian('_, of the calibration based on estilnal.ed pa.rameter w-ctor _.

Ma.trix Q, (lel)endenl. only Ul)On the exl)erimenta] design Z a.n(t cova.riance matrix Ev, is fixed

a.fl_,r calibration. Hence, the calibration uncertainty becomes a ft',:ed deterministic function of

a.pplicd inpul vect.or z. lf_, is normally (limribuled, a. confid('nce inl.('l'Wd a.i. level o for predicted

va.lue .t)(z) is specified by lhe following inequalily:

-- __ ) ,-/ lh_U,:
", "Z /

(3,1)

where th.((_) is l.h(' _-percentile value of the two-tailed /-distribution with k (legrces of fi'eedonl
((yr..()).

5.3. Pl_+dletion Illtelwal of New Measm'enmnt

The pl_dictioJ+ t.t(rcal is the closed interval within which the predicted process ompul

is cotnputed to lie due to both ca.libra.tiotl uncertainty and the uncertainty of a. single new

llle_tsllrelllelll. After calibration, let. ,qo denote a new observation of the rmponse oft.he instrument

1.o input z0, with uncerta.inty ((t and standard deviation m, thai is independent of calibration

measurement error vcclor e,,. The observed value y0 is given by

y_, = T (35)

The predicted value of the new observed Y0 obtained fi'om equation (;{2), that is the calibration

curve, ks given by'

T_ (36)Z0C

The im_diction error 6_(_, defined as the difference between the observed and the predicted

observatiolt_, is given by

@o - y,,- ._(,= Tzo (c - c) + _,,

and has zero mean and variance

( 37 )

•_ 2 ., Z T/._- ! Z
O'_0(Z0) = O'1, + O'_: 7 [),_ 1}

8
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The prediction Znterval at, confidence level a is specified for Y0 as follows:

]_- ,qt} I < ( 0"11 T -1 O

_ \,_ + z,, q _,, .% t,.-_,,_ 7
(3.(})

This inequality represents the uncertainly of a single measurement after calibration. Note thai

predict.ion error 6:q_ is composed of two coml)onents: the uncert.ainty of the new measurement

who_ variance is cr_ and the calibration uncertainl.y whose variance, given by equation (33),is a

deterministic flmcl ion of applied input z.. The Ulwertainty of the new measurement is a precision

error which can be reduced by reldica|.ed measurements, whereas lhe calibratkm uncertainty is

a fossilized bins error (ref. 3) dependent Ul)On xl, tha.l., after calibra|ion, does nor decrease with

re l)li cal. ion.

6. Computation of Inferred Input With Confidence and P rediction Intervals

During ilLsl.rument apl)lication a.H unknown inpui, x_) is al)plied, and oul t)ul ._/I,is observed.

The desire is t.o infer it,put a:0 froln ob._rvalion y. by invert ing the calil)ralion e(tua.tio,I (eq. (36))

rewritten a.s

:q. = zT(..)_ (40)

Solve equation (40) for x and del,ote the solution by 5"_), the estimated inferred input. Whenew_r

z(x) is nonlinear, solution of equation (40) may require an ilerat.iw' COmlml.ational lechnique.

Calibration confidence int.ervals and t)rediction inl.ervals of inferred inl)ut.._'_ are oblaitled 1)y

dividing equations (34) and (39)by .q,(_/') and .q,(}.), respectively, where

(0uT(Y)

.q.,.(5: ) - c (41
/)x

Then the calibration confidence interval of the inferred input, obtained from equation (34), ts

given by

Ix - 21< [zT("_)Q-Iz(_')]I/2 'c_'Fth-I& ((_/'2)

- u_(2)
(42)

Similarly, the prediction interval of the inferred input, obtained from equation (39). is given by

I*- _,,I < [<f/__ + zT(J_0)Q-IzIt('J:/I)]I/2 'c;l=;lh-l&(0/2)
- y,.(._,,)

(43)

7. Calibration Uncertainty Caused by Combined Input Errors and

Measurement Errors

In general, overall calibration uncertainty arises from inl)ut calibration standard uncertah]ties

as well a.s froln output n/easurement uncertahlty. The prev iously developed analy_'s are exl ended

t.o accomlnodate uncertainty in applied input x as well as ineasuren_ent uncertail_ty e_-. Consider

the combined effects during calibrat.ion of the uncertahlty of the kth aplAied input vector xa.,
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denotedby e,._.,and the correspon(fingmeasurementuncertaintyeEt..The uncertaintyof the
kth extended inlm! veclor zh., denoled by Al,. x 1 veclor 6zt., is obtained as

eSz,.= z(x,. + _**.)- z(x,.) (,14)

Vector iiza. has zero exl)ected value and ill,, x ill,, covariance matrix N,,," the uncertainties of

the elements of za. may be correlated. In addition, every pa.ir of input vectors zi and zj may

t)e correlated with covariance matrhx _z_.,. Design matrix Z, defined in equation (12), then has
hx M, uncertainty matrix 6Z COllStructed as follows:

bZ_=

_z,_

(45)

which has expected value 0. where 0 is a K x ,'11,

uncertainty matrix ?iZ is assumed to be indelwndent

equatioll ( 1,1 ).

matrLx of zeros. Each eletlm]ll of inl)Ul

Of lllea.sllrOlllellt error V{'CI, oF {g defillO(] ill

The ol_served ore.lint vector y corresponding lo the aclual input matrix Z + 5Z is giw_n by

y = (Z+ 5Z)c + eE (4s)

and the combined outpu| error vector, denoted by by, is given by

5y=y-Ze=bZc+e_, (47)

which has expected value 0. The K x K covariance matrix of combined output error vector by.

denoted by Ey, is computed element-by-element with the following equation (e( I. (48)) for i = 1

Io K and j = i to K. Because 6Z and eE are independent, the covariance between elements

byi and ?{yj of Sy is obtained a_

coy (byi,(Syi)= S [cTf_zi[)ZjC] -Jr _.[_i_j]

7-- CT_zijC @ O'ij (48)

where O'ij is the ijth element of measurement uncertainty covariance matrix $;F,.

Rewrite equation (47) to express observed otlt|)lll, vector y in the form of equation (15) as

y = Ze+by

10
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wherey hasexpectedvalueZe. Least-squa.resestimationof coefficient,vector c proceedsas
before,after replacingvector e.v by 6y and ma.trLx Ev by Ev, respectively, ill equation,s (16)

through (39). All analysis of variance for replicated calibralions of a multi-input single-outl)ut

sensor pre_nled in the subsequent development provides a. test of significance for the presence

of caJibration bias error due to loading uncertainty.

8. Effects of Process Modeling Error

Models of instrument steady-sta.te int>ut-output relationships are typically approximat('

empirical relationships such a,s multivariate polynomials. Tlw effects of modeling error and

experilnental design on calibration uncerta.inty are quantified, ba._,d on generalized multivariate

linear regression analysis. Calibration slandard uncertainty is neglected.

8.1. Uneertainty Analysis of Modeling EiTor

Let process f(c, z) be modeled as a linea.r function of a.n exwnded input v_'ctor z according

to f(c,z) = ze. whereas lh_' actual functional relationship is given by

:q(z) = .f(e, z) = ze + 7(z) (50)

where ")(z) represents the modeling error. However, the system is calibra.ted by using exlwri-

menta.1 design matrix Z based on the linear model of equation (6). During ca.libration the l'th

observation is given by

which is extended over h observations into mat.rix form a.s

(51)

y = Zc +'r(Z) + eE (52)

where "),(Z) is the /x x 1 vector of inodeling errors. C,oefficient vector _, is estimated by means

of equat ion (23); the exl)ec ted val ue of c, biased by the modeling error, is given by

g(e') = e d- Q-tzTu-I'3'(Z) (53)

Predicted calibration output vector y is obtained by using equation (32). Then the expected

value of :_ is given by

_¢(y) -- Ze + ZQ-'ZTU-I_'(Z) (54)

where the second term represents the predicted output bias error due to modeling error. Residual

vector ev, defined in equation (25), is found to be

_v =WK[P-'_(Z) + e_] (55)
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and fromthis tile expectedvalueot'_.v is

,_:[g_v] = WKP-'_'(Z)

The covariance matrix of g_v is given by

(56)

Z.. = ,r_WK (57)

The exl>ecled value of weighted error sum of squares ,q'._l. given ill equation (29) equals the

follow ing:

:[,q'._::] = ( h - Mz)rr_ + 3'T(z)p-Tw_p-'"t(Z) (5_)

It is seen that Sv, given in equation (30), beconu_ a. I)ia_d estimate of cr whenew'r nlo(h'ling

error _'(Z)is nonzero.

:l'tle variance function (ref. 8) of predicted output _ is computed t)y tt'qng the al)ow ' results

a.s is now shown. For art)itrary vector z, the predicl,ed output ks giw_n by equation (32).

The corresl>onding actual oul, pul. ftmction va.lue !t wil.]lOlll lllCasurelllent uncertainty, S]lOWll

in equation (50), is giw'u by

U(z) = z("+')(z)

The corresponding predicted outl)ut error <S_ is then

(59)

:_(z) = y(z) - ._(z)

= _(z) - zQ-' zTu-_['_(Z) + _E] (_0)

To find the _.riance fimction of :_, take the expected value of the square of equation (60) and

after mine algebraic manipulation, the following result is obtained:

,_i:(,,) = : :n-, q-,• ,r ,:, z+ b(z)-z zTu-I"v(Z)]_ (61)

The first right-hand term of equation (61), identical to the predicted output variance function

of the nlodel previously given in equation (33), repremnts the portion of the bias uncertainty of

the predicted output due to calibration measurement uncertainty. The second right-hand term

of equation (61) represents the portion of the bias uncertainty of the predicted output due to

modeling error.

8.2. Design Figure of Merit

Design figure of merit J defined in equation ( 11 ) is obtained by integrating equation (61) over

hlput subspace ..). It allows examination of the effects of the experimental design on predicted

output en'or due to precisioll uncertainty and bias uncertafltty. As in reference 8, figure of merit

J is separated into variance error term V and bias error terns B:

12



J = v + tY (6_)

The precision uncertMnty portion of ,1 obtained fr(mJ the flint right-hand term of equation (61)

eq u als

h" _., zT (_ 1 Z dx (63)

Similarly, the bias uncertainty portion of J obtained from the second right-hand term of

equation (61) equals

B- cr_Q. [_(z)-zQ 'zT_'(Z)] v dx (64)

where 0 is the volume integral of sut)spa, ce 3 given by

t_ = ._dx.- (65)

8.3. Effects of ExI)erhnentM Desigm Oll Figm'e of Merit

The effects of the exl)erimenlal design on calil)ration uncertaillty due to llleasIlrelllellt

uncertaillty aim on calil)ration error due to modeling error are quantified I)y mealLs of figure of

merit J. Silnultaneous lnilfimization of V and B impo_s conflicting requirements on _qe('tion

of experimental design l). Equation (63) indicates tha.t precision uncertMnt,y V tends to decrease

a.s the vector length magnification of mal rix Q increases. The w_ctor length magnification of

Q |,elld,'4 |o in('rease a.s the distance of the design l)oints fl'om the origin increases, generally to

the boundary of volume 3. On the other hand. reference 8 demonstrales that bias uncertainty

B tends t,o be minimized by uniform placenlenI of test, points throughout space 3. ttence, the

accepted practice of unifom|ly spacing test points from zero input, to full _'ale input, a.nd back

to zero can reduce calibratioll uncertainty ca.tLsed by improl)erly modeled I)henomena such as

nonlinearity and hysteresis.

A number of well-known methods exist for detection of modeling errom. Examination of

residual error plot.s often discloses the presence of systematic errors in addition to random

measurelnent errors (refs. 7 an(] 10). lR.esidua] normM probability plots (ref. 10) indicate the

presence of nonnormally distributed errors which are likely to be systematic. The process of

detecting modeling error may indicate the functional extension required for model improvement.

On the other hand, polynomial models should be limited to the minimum order needed to avoid

fitting data. 1,o random noise fief. 10).

9. Uncertainty Analysis of Nonlinear Instrument Calibration

The previous])' developed generMized linear regression analysis of instrument calibration,

with calibration standard uncertainty, is extended to include general multivariable-int)ut single-

out put no nlinear pro ces_es.

9.1. Combined Input and Measurement Uncertainties

Consider a process modeled by nonlinear function y = f(c, z) defined in equation (2). Outpui

uncertainty ¢Sy can be approximated as the sum of the differential of f(c,z) with r_pect to z

and measurement uncertainty cc as follows:
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[ a fLyzc'7')] (66)5y = f(c, z + 6z) - f(c, z)-4- cr = C 0z /Sz + (r_

During calibration, h ob_rvations are acquired in accordance with h" × M,, design matrix Z

defined in equation (12). Tile uncertainty @,. of the kth observation ya. is given I)y

[ 0f(c-2' z*)] bz,. + ¢<. = fz(c.z,)bza. + ev., (67)@* = k az

where 1 x h gradient vector G(c,z,.) = [flf(c, z,.)/0z]. Note that. a.tl,, is normally distributed if

bolh _za and ,:_ are norma.lly distributed. The actual value of t.hc kth ob_,rvation is given by

y_. = f(c,zt.) + @t.

Let f(c,Z) denote the K x 1 w,ctor fitnction which is obt.ained by evaluating function f(c, z) h)r

each of t.ho K rows of Z. Aim. lel y and by denote the corresponding h x 1 vectors of ob_rved

outputs and ou! pul uncertainties obtained by e_luat.ing equa|.ions ((i7) and (68) for k = 1 to K.

respocliw, ly. Then y is giw,n by

y = f(c,Z) + 6y (69)

The K x K covariance ma.trLx of _y, denoted by Ey, is obtained element by element with

equation (67) as follows:

Ev_, = L(c, zi)E,;jf/(c, zi) + % (70)

where E,., is the covariance matrLx of the itll and jth input vectors zi and z/, c:ij is the covariance

of the ith and jth voltage measurements, and i and j range from 1 to K. If Ev is symmetric

and positive definite, then it can be expressed in the form of equation (16) as

_v = rz_.U (71)

where K x K matrix U is known and can be decomposed into the product. U = ppT a_s shown in

equation (17). Output vector y is transformed into vector v by equation (18), that is, v = p-ly.

F,quat.ion (69) then becomes

v = P-If(c,Z) + 6v

where bv = P-lby. 31w expected va.lue ofv is

(72)

E[v] = P-If(c, Z)

The covariance matrix of ,"iv is given by
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Ev = cr_.I (74)

Therefore the elements of _Sv are uncorrela.led and _v is normally distributed whenever _Sy is

normally distributed.

9.2. Least-Squm'es Esthnation of Proc_ss Pm'alneters

Tile least-squares estimate of pa.ranmter vector c, denoted by _:, is obtained t)y milfimizing

the error sum of squares ,q_t2, given 1)y the following (tuadratic form. with respecl to c:

,,_,_ = [v-p-'f(e,Z)]T[v--P-'f(c, Z)] = [y- f(c,Z)]Tu-L[y- f(c,Z)] (75)

To minimize 'q',s'(2,COlllpute the gra(lient of equation (75) with respecl to C all(] sel lhe resulting

set of/I,, equations equal to zero and expressed in vector form as

I ?)5'_4 _ Iv - P-If((',z)]Tp-IF,. = 0 (76)
h - 2 0c

where h is a fllnction of in(lependenl a,rgmnents v. c, and Z: tlle dilnension of h is 1 x ,,_1_ and

of ve('tor [v- p-If((., Z)] is K x 1: and K x ;lL ma.trix F,, is defined as

Of( c, Z)
F_(c,Z) --- (77)

Equat ion (76) can 1)e solved for _ I)y llleallS of a, Newt on-Haphsoll ileration or a similm" method,

p.rovided tha.t the symmel ric M_ x M,. Jacobia.n matrix of ,q'_.r7with respect to c, denoted t)y R,

is nonsingular in some region a t)oul _ and Z; that is

0_S',.(_, /?h (7_)
R-- 0c. _ = 0(-'T

9.3. Uncertainty of Estilnated Process Pa,'amete,_

The uncertainty 6E of stochastic vector E is obtained in terms of con_)ined output uncertainty

_Sv from the differential of equation (76) as follows:

(_)h ] T

5--4vJ av + n6_ = o

where K x fil_ matrLx [0h/0v] equals

(79)

0vJ

Matrix R is shown in the apl)endix to be

= p-TF_ (80)

[c01,] = FTU_IF _ + H_ (Sl)
R= iS-gJ
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where the ijth element of M_ x Mc matrix Hz is given by

hFo = [v - P-'f(e, z)]WP-lf (82)eelj

where h x I vector fc< is the ijth colunm of M¢ x M_ x K array F_ defined by

0FT(c, Z) (O_f((", Z)
F,,_ - - (83)

c9c t)c 2

and 1 _< i,j _< M_. It is seen that the K x 1 vector expression [v-P-lf(gz, Z)] contained in

equation (82) equag the vector of residuals denoted by ge,,. Then if the norm of _,, is sufficiently

small, matrix HE can be neglected in equa.l.ion (81)to yield the following approximation:

T I
R,_ F,.U F,.

l:rom equations (77) l,o (80), the uncertainly of estimated t)araunel, er vector _ equals

T

¢S_=-[0hl-' [Oh l 5v=-R-'FTp-Tbv
t0eJ kavJ

From equation (85), catit)ration parame.ter uncertainty b_ has zero mean,

distributed whenever/_y is normally distributed, and its cova.riance mal, rkx is given by

(84)

(85)

it is n()rmally

whe re

') -l
2_,.= a;-Q¢ (8(_)

Q,.- [R-'F_U-'LR-']-' (87)

If approximation (84) holds and if the rank of K x AI_ matrLx F_ equals kL, then matrix R is

nonsillgular and matrix Q_ is approximated by"

Q_ _ R (88)

9.4. Residual Sum of Squares mid Stmldal'd Error of Re_'ession

Let, _¢denote the predicted calibration oul_put vector corresponding to design matrix Z and

estinmted parameter vector E, where

¢e - P-'f(fi, Z)

The vector of residuals e_ is defined as follows:

(89)

e,, -- v - v = P-_[f(e, Z) - f(_, Z)] + bv (90)
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which is represented in differential forin as

e,, _= P-IF_(c, Z)_c + 5v = (IK -- _lr)_v (.oi)

where K x K matrix _tF is

_F -- (p-IF_)R71(P-IF_) T (92)

The expected value of e.v equals zero, and the covarian('e ula_ FiX is given l)y

E_, = a_.(IK -- _l_) (93)
t

An unl)iased estimate of cri-', is now ot)tMn('d. The residual sum of squares is (h'fin('d as

,b',sF _ (_,1'(_,v= (_vT(IK -- _F)bV (9:1)

As shown in the appemlix, ,%,F/cri( is chi-square distributed with K - AL degrees of freedom,

and the expect.ed value of £'.,'t-is

,g(,%,:) = (I<- ,_I_)4

Therefore an unbiased eslimale of arrs given t)y standard error £'v, which is defined as

(95)

,q'v- \K_AI,/

A confidence int.erval for cry al. confi,.l,:'nce level o is given by'

(96)

( K - aL ) v'CS'r ( K - M_ )l/2,q'r
_< ar _< (97)

_( I+.)/'2 \ i-,,)/'_

where \,, is t.he o-t)ercent.ile value of the chi-squai'c distribution with K- ,ll_ degrees of freedom.

9.5. Colffidenee ml(1 Pre(tietion Intervals of Pl_dieted Output

The confidence ellipsoid for estimated calibration parameter reel,or c. is defined by" the

following ine qu all ty:

(e e)TQc((: c) < i_'[,., _-_w,.,r< _t,.(o) (98)

where b_t,..,,-_._t,.(a) is the (_-percentile value of the F-distribution with M_, K - M, degrees of
freedom.

After calibration, consider z0 _s an arbitrary deternfinistic input. The corresponding

predicted value 'y0 = f(c-, z()) is COlnputed by rising calibration parameter vector c. The
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uncertainty 6_ of _ due to calibration u.eertainly alone is obtained fronl the differential of
equation (2) a_s

5_lt, = Yu - _1_= f(e, zu) - f(&z0)

= fT(_:, z_,)&: = fT([;, Z0)R-' FTp-J6v (99)

where Me x 1 gradient vector f_(c,z) is defined as

O.f( c, z )
L(e,z) - 0(------7--_ (100)

The variance of predicted value _(z,), termed the output var_a,c_ fu,(t*o, (ref. S), is given 1)y

the following quadratic form:

(r.,'_(z,))= cr_ [fT(E,z,,)qc'f_(&z,))] '/=' (101)

From equation (67) we can see that if uncertainty 5v is normally dist.ributed, _70{)/cri,is normally

distril)uted with zero nlean and uni! variance. Since £'_./cr{. is chi-square distributed with Ix - ,'lit

degrees of freedom, a confidence interval a,l level n is given for _ as

Jig/,,- f(g:.z,,)l _ [fT(_. z[0Qc'L(_.z.)] '/=' t.,'4'w (1o2)

where t,, is the tail of Student's /-distribution at confidelwe level (_ with K - ?tL degrees of

freedom, lnequality (102) de fines the ca libm tie n confi den c_ interval.

Let a single new nleasui'enlent :/,to1)e made afl.er calit)ration by itsing an instrunlenl for which

the variance of a single measurement equals o'_. With the use of equation ( 101 ), the _ariance of
tile singh" new measurement is

"2 '_ " " 2 2

%.(z0) = _r_4,7,(z.) + _r;,= _rr ;,,(z0) + _.j

where quadratic form p_ is defined as follows:

(103)

p,_(z,,) = f_(_, z o)Qc'L(E, z,, )

The confidence interval at level a of new mea.surement y0 ks given by

F

lye- f(_.,zo)l < [p_(zo

which is terlned the prediction interval.

(104)

(lO5)
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An analysis of variance for N replicated calibrations of a nonlinear multi-input-single-output
sensor is obtained in the appendix which provides a test, of significance for the pre_nce of

calibration bias error due to loading uncertainty, in addition, equations are provided for



computation of matrix R, given by equation (81), in terms of the K x K covariance matrices of

a single replication.

10. Multivariate Multiple-Output Analysis

The preceding analysis is now extended 1,o a muM-inpu! nmlti-output instrunwnt such a.s a

Mx-component st.rmn-ga.uge balance. All.hough l,he notation becomes cl, mbersome, t.he extended

computal.ional procedure simply ilera.les the previous mulli-inlml, single-outlml technique for

each process output elemenl.

('onsider an L-valued process g represented by a 1 x L row w'cl.or of scalar funcl.ions of a.Ii

AL x 1 parameter vector c..i and z, each of the form of mapping equation ( 1 ). Let. gj(e..i, z) denol,"

the jth fmlction, where j ranges from 1 to L, where gj is depelldenl upon the corresponding

M,. × 1 parameler w,ctor c.i and 1 x M,, input vector z which is common ow'r all values of j.

Arrange lhc (:oelefi('ienl reel.ors L inlo :_q_ x L coefficienl matrix C a.s

I C.2 I ... I ]C = c.i I I I c'I (106)

As usual, Ix observations are made during ca.libralion in a.ccordance with design matrix Z. For

the kl.h observation let g, Ya.-, and eva.. denole 1 x L veclors of fun('lio,L'_ _.l.i, ob_'rved ()Ill,pill,S,

a, ll([ lll("a.Slll'(_lllellt errors, resl)ecl.ively, where

g(C,z,)= [.q (C.I,Zh.).q'_(C.'2,Zh.) ... 9/(('.I,,z_')] (107)

y,.. = [.q,.i :qh.:e.-- Y_..IJ (los)

( 1o.q)

T denotes the corresponding 1 x M,. input vectorrespecl.ively, where e.,,_., has zero mean and z_.

defined in equation (12) as the kth row of design matrix Z. Then the funct.ional relationship for

the kt.h observation is obtained by extension of equation (2) to L space a.s follows:

y,.. = g(C,z_.+6za,) + e,,h..

= g(C,za.) + 6ya,. (11o)

where uncertainty 6yh.. is given by

bya. = g(C, z,+6z)- g(C, Zh. ) + %,..

--6zT[ 0g(C'z_')]- _'z + e-_h..

19
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Note that matrLx [Og(C, z: )/Oz] has dimension M. x L. Vector equation (1 lO)is then extended

l,o a I( x L matrix equation as shown 1)y tile followirlg equa,tious:

Y = G(C, Z+aZ) + Ev

= G(C. Z) + bY (112)

G(C,Z

g(C, zl)

g( C, z_)

g(C, zl, )

(113)

Y 7__

Yl •

!Y_-
i

Yh-

(114)

nv ----

v_ •

_vlq"

= [%.1, ev..e, ev-I] (115)

Note thai /( x 1 vectors _,,-1 ..... e,,.r denote colmnns 1.... , L ofmatrLx Ev. Also N x L nlatrLx
bY is obtained I)y extension of equation (111) as

,Sy = + Ev (116)

Let Ev ....... denote the K x K covariance matrix of error vector ev.,,,, and Ev ....... denote the/( x K

covariance matrLx of colm-nn 7, of matrix tSY, wlfich is computed element by" elemeilt by using

equation (48) with 7tl ranging from 1 to L and f replaced by g,,,. Furthermore, define £'s,#,,, a.s in

equattion (75) with f replaced by, g,,, for each of the L elenients ofg. The least-squares estimated

coetticienl, mat,rLx, denoted by C, is conlpul, ed column by colmnn by solving equation (76) t,o
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minimize ,gs.Q,,, for m = 1..... L, with E.,,, the mill colmnn of C:. The co'_ariance matrLx and

confidence ellipsoid for ft.,,, are computed as before with equations (86) and (98), respectively.

After calibrati¢_n, the predicted Olnl)Ut ma.trix f¢ for a.rbitrary input z using estimated

coefficient matrLx C is given by _ = g(C, z). The uncertainty _ due to ¢'alibration uncertainty

a,lone equals

_ = g(C, z)- _(C,z) (t 17)

The calibration confidence interval foE' 6_ is obta.ined element by element by equa.tion (102).

Similarly, the prediction interval of a new 1EleasureEnenl. is obtained elen|enl by element, l)y

equal.ion (105). This analysis is illustrated by an example of a two-input two-oulput linea.r

process given in t.he sul)sequenl, developnlelH..

11. Uncertainties of Inferred Inputs From Inverse Process Function

An hlstrumenl is normally employed to int_'r the value of an inpul x based on t.he corre-

sponding observed output y by means of the process model f(c,z) h)r the single outpul cak,_,, or

g(C,z) for the L-dimensional case. following calibration. Calil)ra.t.ion confidence intervals and

I)redict ion intervMs of the estimated pro(:ess inpul, are obtained.

Lel g denote bolh ca.ses in the following discussion. Input z can be compuled if invers'

function g-I exists. A necesset U a.nd sufficient condition for the existence ofg -I is l.hat funcl.ion

g be bqeclire, that is, a. ()lie-to-one OlltO mapping from ?)_=at,to 51_r. If ..]I_ = L, g is continuous

a.nd differentiable and if for observed OEltpul. vector Y0, a.n input w_cl.or zll exists such tha.!

Y0 = g(C, zl_), then a necessary condition (ref. 11) for the existence of the inverse fllnction g-1

is lhat L x L. matrix 0g/0z be nonsingular in a. region about zll. Indeed, the inw_r_ function

may be obl.a.ined by solving lhe following syslem of ordinary differential equations obtained from

eq ua.l.iotE ( 1 11 ):

[ Og(C, z),] -dz T = dy [ 0z
(118)

D/henever a. closed-form inverse function is unavailable, given olxserved out.lint y_, the corre-

sponding predicted input, va.lue _ is computed iteratively from the relation Y0 = g(C,7,0) by

mea.lts of Newt.on-l{aphson iteration or a. similar method.

If input z,, were known, the uncerta.inty ¢S_ of the corresponding predicl*_d out.pul, would be

given by equation (1 17). Itowever, since predicted input zc_ is inferred from known oUl.l)U! Y¢,,

the uncertainty ¢S_'0 is obl.ained from equation (118) as

lOg(C, £0)] -_ (11.9)

where 0g/Oz IIIIISI, be nonsingular and 6y0 is estimated by equa.tion (117) with z_ repla.ced by

;/0. Confidence and prediction imervals for 7,0 arc then obtained from those computed for :Y0

with equations (102) and (105) followed by transformation (eq. (119)).

12. Replieated Calibration

A statistical technique for detection and estimation of bias errors due io either modeling

error or calibration standard error is now developed, which requires nmltit_le replications of
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the calibrationexpefilnent.The use.of replicatedcalibratioltsovera.nextendedtime period is
importantfor thefollowingreasons:

1. ribobtainadequatestatisticalsamplingovertime

2. To lest for nonsl.ationarity and drift

:1. To lest for bias itllcerlainty

4. To estilnatc bias and precision uncertaillties

The variance of averaged random errors is known to decrease a,s 1/N over N replications,

wht, rea.s thai. of bias errors, which are repeatable, does not decrease with replication. Tests for

the existellce of significant bias uncertainty by analysis of variance are l)a_d on this fact. The

bia_ t.,_l, derived for a general nmltivariate nonlinear process in the appendix, computes the

SlllU ()f squares ,S'._.\- of the set of K residuals averaged over N replications. The mean value of

N,' _: is a.n estimate of ttw variallce due to bias mlcertainty. The mean value, denoted by N_/, of

t he difference ,ff_t between t he sum o f squares ,ff_'F of the global set of A:K residuals and ,q_.\- is

an estimate of the variance due to measurement error. The variance ratio XNx/,q._I provides a

test of significance for the pre._mc_, of bias errors. A similar analysis a.llows detection of drift of

any estimated i)arameter during replication. Details are given in the a.ppelldix.

12.1. Colnputation of Replicated Design Matrix

A replicatkm matrix is defined which provides convenient cbmputational notation for repli-

cat.ed calit)ration experimental designs. ColLsider a single-output, sensor modeled by an (M,,- 1 )th

degree" polynomial. The sensor ks typically calibrated by tLsing K standard loadings applied in

a pl'edefined order, say zero to fidl scale and back in (K - 1) equal increments, represented by

K x Mz experimelgal design matrix ZK. The calibration is replicated _\' times, de_ribed by

A:1, x -AI_ design matrix ZNK, where

ZK[

zKI
ZNK = = HTzK (120)

aml where K x NK replication matrix H equals

H -- [IK IK ... IK] (121)

12.2. Replicated Moment Matrix for Linear Single-Output Process

Monlenl matrLx Q is computed for a replicated experimental design for calibration of a

linear single-output instrument with uncorrelated measurement _mcertainties. Use of replication

matrkx H perlnits computation of Q in ternLs of the single-replication K x M_ experimental

dt_ign matrix ZK. Assume that the calibration standard uncertainties are fixed mlknown bias

errors modeled as a zero-mean normally distributed random variable and that design matrix ZK

has K x K covariance matrix cY_IK . Because complete, design ZNK contains N replications of

design ZI<, the N subsets of K loadings are correlated with the NK x NK covariance matrix

E,, of design ZNK given by
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_r;H H = cr_

- IK

IK

IK

IK

IK

I K ...

• . IK

.. I K

IK

(122)

AsstlIIW &lso thai SelL':3Ol" Oil{ put Ill(_&sllrClllelltS arc Ulicorro]_led wit]l coval'ig:tllC_ lll&lrLx

IK 0K

OK IK

OK 0K

OK

OK

IK

= O'?INK (123)

Then (:()mbined illpUt covarian(e

W lip r(?

UNK ---- INK + r_HTH =

(,_ + 1)Iu

IK

IK

XK

(_ + 1)IK

IK

IK

IK

(n + 1)IK

124)

and

2
O'.r

(125)

It is readily' sho_ll that

= INK -- /_HTH = ,/]

- ( 1 - /t)/3IK --IK ... --IK

--IK (1 --/])/3IK ... --IK

--IK --IK ... (1--3)/3IK

(126)
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whe re

o

,q - (1_7)
No+ 1

As shown in lhe appendix, the M_ x _'tl_ generalized montent matrix QNK T -1z ZNKUNKZN K is

given by

The I)orlion of tile calibra.tion uncertainly due to calibration standard uncertainty, repre-

sented I)v a:j. in the denonlinamr of equation (128), does not decrease with replicatioll. On i he

other hand. Ill(" portion of tile calibration uncertainty due to nleasurenlenl uncertainty, rel)re-

seuled by rr_, in the denominator of equation (128), decreases as N _/_ with replication. Note that

e(tua, tioIl (128) t)ermils more efficienl COml)uta, tion of uncerlainties for an -YK x :'U_ rel)]icaled

ext)erilnenlial design i. terms of nonreplicated l\x M,, design nral,rix ZK bee;rose cornl)utal ional

slorage requirements are reduced by a factor of N.

12.3. Replicated Moment Matrix for General Sh_gle-Output Process

_lll(' technique developed in the previous section for cornpul,al,ioll ()f nrolnenl matrix Q for a

replicated experimental (h_ign is exten(led to a, general nonlinear single-output instrunmrll, with

correlated n|ea.,_urement uncertainties. Consider a genera.l multi-int)ut single-oul,l)Ul process

calibrated by ttsing experimenta,1 design ZK replicated N times. Tire K x 1 output uncertainly

vector o[" a single replication, (]el]ot,e(I ])y 5YK, is given by" expanding equa, tion (67) for'

k = l ..... K. Then for N replications, Nh" x 10Utl)ut uncertainty vector byNK is given by

_YNK = HT6fz + eE (12_)

where K x 1 gradient vector ¢Sf_., defined in tile appendix, has K x K covariance matrix

Efzk = rr_UfzK and NK x 1 measurement uncertainty vector eE has NK x NK covariance

matrkx Er, = o'_UENK, all defined in the a,ppendix. The mea.surement uncerl,ainty is a_ssumed

uncorwlated between replications and the K x K measurenlent covaA'iailce matrix of ca,('h

reldication ks assumed to be EEK = o'_:UF_ • From equatiolJ (129),

2 0.2
EYNK 7_ EE -J- Erzn K = o'KUENK + .rUrzNK = 0"2UYNK

where NK x NK covariance mal rLx _fZNK is given by

(130)

From equation (131), UVNK

EfZNK = o'yUfzNK = cr_HTUfzKH

can be written as

(131)

UYNK

where o is defined in equation (125).

= UEN K -]- o'UfzNK
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As shown in t.he appendix, the inverse of NK x NK matrLx UvNK can be expres_d in terms

of Ix x K matrices Ufz K and U_K. Define K x Ix inatrix B a_s

and h x K matrix i as

n - [urK + (,¥ - I>u_,_K]-' Ul.z_ (133)

A = (UEK + °U,'zK [IK -- (N - 1)n]) -_ ( 134 )

If i.hg ilivei'_ TM matrices contahied ill equations (13:1) and (134) ex[sl., then Jl,. x kl,. iliOlllelll

llla.l, rix (INK = ""NKrFT U-IYNKZNK' defined in ternls of Nf\ x 2'1,I_.nlatrix iNK, and J\:l\ x A'h

nlal.rix UrN K, can I)e conlt>ule(] in lerlns of K x ,'1I_ iiiatrkx Z K and Ix x Ix nlai.rices IK, B. a.n(l

A as

(tNK= ,'VZ_[IK - (A' - I)B]AZK (1:/5)

12.4. Analysis of Variml('e for Estimation of Bi+u_ and Pre(-i_ion Uncertainties

A test o[" significance for bias uncerl.ainl.y dlle l,O calil)ration standard error or nlo(]eling

error all(] all esl, inlalo of the corresi)olldillg standard +Tror are ol>l, ained t>y analysis of variallC('

t.echniques, as shown in detail in the al>pendix. Amunle as null hyl>othesis that the calil>raiion

bias i_q'ror i,s zcro; |,hell lnal, rix UNK equals INK in e(lllalioli (124). By using etllla,lion (27).

5r]_ X IrK illal, rLK lINK becollies

/

-1 T z #
_NK = ZNKQNKZNK HT_IK H

where the K x K inai.rLx _1 K is defined as

(1:16)

IlK- ZK(zTzK) -_ TZ K (137)

The NK x 1 residual vector 6 has zero expected value and NK x NK covariance niatrLx OaWNK,

given in equation (26) as

WNK ----INK -- _INK

As shown ill the a.pl>endix, the residual vector _. Call ]>e expres_d as

(138)

= WNKEE (139)

wtiere NK x 1 error vector _r is normally distril>ul, ed wMl covariance nlatrLx O'2INK. Lel 7.,,

denote the K x 1 residual veclor at, the roll replication, which has zero expected value alid

covariance matrix cCWK, given in equation (26) as

Wu = Ii -- _1 i (14(/)

25



Thus,6 is partitionedinto N, (K x 1) subvectors

Let eK denote the mean value of residual vector G,, averaged over N rel)licatiolts; tha! is,

(141)

\'

1 ^ 1 1
_K = --S-'_,,, = _tt_ =;\'/-.a _ HWNKeE

71= I

The total residual stun of _luares can be partitioned as follows:

(14_)

\- \-

-_, r_ z

n= l o= I

(14:3)

As shown previously ,'_i,.E/o'" is chi-square distributed with ,VIi - M,, degrees of freedom, and

t.he standard error of the regression given by

,q'SF ,_ I/e$t: = N 1_ --- A'I_'J
(144)

is a.n unbiased eslhnate of or. Define the first, right-hand term of equation (143) as the sum of

squares due to bias tmeertMnty, which can be expressed as

[_

1 T
s.,.,-- x z4: = --

k= 1

(145)

where G H = (I/N)HTH ks defined in the appendix and (_. is the kth element of eK. It can

be shown that ,q'_.\-/cr _ is chi-square distributed with K- M,, degrees of freedom. Variable ,q'x,
defined as

( ,_,,_ ) ,nS'_- - \K - M,,
(146)

ks interpreted as the standard error due to bias uncertainty. Define the second right-hand term

of equation (143) as the sum of squares due to measurement uncertainty a_s follows:

,_',_,'1/- E(e,,- eK)T{P--.- eK)----- _TWNK(INK- GH)WNK_E (147)

2
It, can be shown that ,5,,,_r/cr is chi-square distributed with NK - K degrees of freedom; the

mean value
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I fCh'_l I 1/_,q_r = N _--- Ix"

-,2 2
is interpreted as the standard error due to measurement uncertahaty. Chi-square variates ,bx/o- c

and ,S'_/o'_, ca,n be shown 1,o be independent, tteuce, lhe ratio N_./,';2r is F-dist, ributed with

/( - M,. NI\ - Ix degrees of freedom: the test. of significance for bias error is a.s follows

F' -_- --£'_ > Fi,- _i..x1,-n(") (14!))

If inequalil.v (14!)) is sal.isfied, then t.he null hypothesis is rqjecl.ed: this indicates lhe existence

of bias error al confidence level ,. The ana.lysis of variance is sunm,arized in l.a.l)]e 1.

Table I. Ana.lysis of Variance oF Residual Su n of Squares

Source of varial.ion l)egrees of fr_mdom Sun, of Sqllares l{.ool.-mean-.'_luare

Bias u nc ert ain t.y 1'( - 2_lz ,q',;x- ,_\

.Me asu r e Jtie n! u ,w er I.a it, 1y N A -- /( .g.s'al ,g _r

l{esid u a.l sun I of _1 u a.l>S N Ix. - alz ,q','t -- ,q'.,'\ -F- ,g'.s.,1 ,q'E
4.

12.5. Stationarity Test of Esthnated Pm'mneters

A test. for st.ationarily of an element c,,, contained in estimated parameter w'ctor gz over N

replicat.ed calibratiolts is developed in the appendix. For example, significant, variation of the

intercept or slope during replica.ted calil)rat.iozts may 1)e detecled.

l,et. _ denote the parameter vector estimat.ed globally over ;Y _q.s of/f- point calibra.lions. Let

er,, denote the parameter vector estilnated over l.he /(-poinl. d+_l.a _'t. obtained during the ,l.h

replicatk)n and ,q'._t¢,, equal the corresponding residual sum of _tuares for 7_ = 1 ..... N. l)efine

_Y

,".,'re = _,':;.s R,, (150)

It. is shown that £',.R/cr_. is chi-_uare dist.ributed wilh N(K- Mz) degrees of freedom.

To lest for sta.tionarit.y of pa.rameter c .... .replace l.he 77tI.11 element of oR,, by _,,, E e, and

COml)ule the resulting error sum of squares, denoted by ,g.s', ....... for 7_ = 1 ..... N. Con,l)ut* _ the

SIllll

(IF)I)

It. is shown that (S's.,,,- S',s,e)/cr ") is chi-square distributed with N - 1 degrees of freedom.

Therefore, the ratio [( S,'.,.,:,.,,,- ,%r+)/(N - 1)]/{S's.e/[N(lf-M,.)] } is F-distributed will, N- 1,
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N( K - Mz) degrees of freedom. Tile test of significance for nonsta, tionarity of parameter _;,,, is
then a.,_follows:

(_s'.,,,,,,,- 5',,,R)/(x - 1)
7;,, = S.,.d[X(l,-.%)] >/:,-_.,.(,,- ,,.)(,.) (152)

13. Examples

13.1. CMibration of Single-Input Single-Output Nonlinem" Sensor

(kmsider an inertial angle-of-attack _l_sor which sel_es the pro.iection of the gravita,tional

force ont,o the aircraft model axis. At zero roll, the angle of attack selLsor is accurately modeled
tV the following equatiotu

_/= f(c,.) = 5'sin (o - 0) -I- b (153)

where the scalar o, the angle of attack in radians, is the independent variable z; the 3 x 1
lmra|||et,er vector is given by e = [b 5' 0ff, where b = Offset, in t', S' = Sensitivity in V/9,

0 = 1Misa.lignmenl angle in ra.dians, and 7/ is the se.nsor output in t'. For l,hb_ example input
vector z equals applied angle (_ and b: denotes the uncertainty of _ during calibration.

Calibration design matrix Z has dilneltsion l'?x 1. Equation (153)is extended to If dimensions
a.,_follows:

_l = f(c,Z) = 5; sin (z- 01)+ bl (154)

where _1denotes the K x 1 angle of attack sensor output vector, z denotes the single column

of design matrix Z, shl denotes the K x 1 vector obtained following element-by-element sine

function evahlation of the elements of (z- 01), and 1 denotes a K x 1 vector of ones.

l,et _z denote the calibration angle uncertainty, and let _c denote the uncertainty of the

sensor vollage measurement with variance cr,_. Then the observed output 9' is given by

'9'= f(c, a + ¢S:) + er = ,_' sin (o + ¢S: - O) + h+ (r

Output uncertainty bg' is obtained with equations (66) and (153)

(155)

6y = S cos (: - O)5z + (c

Equation (156) is extended t,o K dimensions a.s follows:

(156)

_iy = ,q' cos (z - 01) o 6z + ¢e (157)

where cos denotes_ the K x 1 vector obtained foUowing element,-by-element cosine function eval-
uation of the vector z - 01, o denotes element-by-element multiplication of equally dimensioned

matrices, and by, 6z, and (z denote K x 1 vectors of uncertainties t_,j, tSa, and _r, respectively.
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Tile observed calibration output veclor, including me_surenlenl uncertainty and calibration in-

l)Ul. uncertainty, is thus extended to K dimensions _aqt.h the use of equation (17)3) to the following

equation:

y = 71+ ?iy = ,q' sin (z - 01) + bl + 6y (158)

It can be shown that the Ix" x Ix" covaria.nce matrix of y is given by

_v=COV (6y =,q'_[eos(z-01) cos (z-ol) T] o Zz+_E (159)

where _z a,nd _]E are the covar, ance matrices of 6z and re, respectively. It is see,, (hal. ]_v and

U given by equal.ion (71) are symmetric a,,d positiwe deft,file.

The least-squares esl.ilned.e of para.t,leler w'cl.or c is obt.ai,,ed by minimi zat ion of tile following

qua.dralic form given in equa.tio,l (75):

,",':.(_= [y - bl -,",' sh_ (z - O1)]TUTv'[y -- bl - fi silt (z - 01)] (16(})

The 1_ x :{ Jacobian matrix of f((:. Z) is fou,,d to l)e the following:

F,,(c,z) = [1 _,sin (z - 01) ', - ,5 cos(z - ol)] (161)

The leasl.-squa.res estimated coeffi('ienl vector c. is obtained t)3" solving l.h(. following 1 × 3 syslon,

of nonlinea.r e(lua.l,io,t'_:

h(c, Z) = [y - bl -,",' sin (z - 01)]Tu-I[F,.(c, Z)]

= e((..z)Tu-I[F,.(c,Z)] = 0 (162)

where e(c, Z) = [y - bl - £' shl (z - 01)]. The sta.ndard error of the regression is given t)y

£,v = { [Y - bl - ,q' sil' (z - 01)]Tu-'[Y -- bl - ,q' sin (z - _1)] }'/_I_ - 3 (163)

which provides an unbiased estimate of aF.

From equation (161), equation (162) may be pa.rtitioned as follows:

I "_ T
I eT(c,Z)U-I Silt (Z 01) ;h(e, Z) [eT(e' Z)U-I1 I= - -Se (c,Z)U -1 cos (z-ol)] (1(54)

Then matrix R = [0h(c, Z)/cOc], give,, i,, equation (81), is found to be

R = FT(c.Z)U-IF,.(c. Z) + HE (165)
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where

HE---- ! ° o0 --eT(c,Z)U-Icos (Z -- ¢1

--cT(c,Z)U -I COS (Z -- 01) seT(c,Z)U-IsilI(Z -- 01)

The. ('ovariance matrix of E, denoted I)y _ = cr_.Q,71 can now be COml)uted with equation (86).

"File threo-dimensional confidence ellipsoid for fi is given by equation (98): calibration confidenc('

inWrvals an(] prediction int, erva[s for predicted output voltages are given by equations (102) and

(105). resl)cctively.

Following calit)ration, confidence intervals and prediction intervals for inferred inl)ut angles,

given ol)served angle of attack sensor outl)tl( voltages are now obtained. For this system, a

t, niq,w inverse fi_nction of f(c.o )exists for values of. in the interval [-,'r/2,Tr/2], givon by

(167)

('oufidence and prediction iutervals for a are ot)tained by dividing equations (102) and (105).

resl)c('tiw'ly, by the gra(lient off(c,(_) with r(>pect to., where

'l'hc desired .% percent calibration

_f(c..)
- 5; cos (.- O) (168)

Oo

confidence interval for angle . is then

t _,-_:2(0.95 )S'vp .(o) (169)
I_,- ,_(__)1_< ,_,cos(. + _)

where p_,(z) is defined in equatiou (104). Similarly, the 95 percent prediction interval for new

tneasurenlent r_)is obtained as

h-'i( 0.95 )Sy [p_(00) -_- 0"(_I0"_-]I/52

t-0 - 80(a )l _< " ' (_70)
._ cos (.,, + (_)

where ,_()(7:) denotes the predicted value of new measurement cY0 irLferred from ineasured output

,q0 by means of equation (167).

13.2. Two-Input-Two- Output Lineal" Ins trument

Consider a two-input two-output linear proce_--for example, a two-component strain-gauge

balance with 1× 2input vectorx= [a:_ x_],3× 1 extended input, vectorz x = [1 x_ x2], 2× 1

output vector y = [y_ Y'2], and lneasurement error vector eE = [el e_]- Coefficient matrLx C is

given by

30



[ ,]
COl C02

It.7]= ell Ch_| (171)C =[c.l ,

Lc_, (,.,,.,j

where c.,,-- [el,,, ci,, c_,,] I for 7_ = 1,2.

For a single ot)servatiou, the outpul, is given by y = zTc + eE. l)uring calibration. IX.

calibratiou input vectol_ are applied, represeiit_'d ])y lhe following Ix x 3 design ilialrix Z:

Z __

- 1 d'll ,1'17

l .1!21 .F2. 2

l d!kl 3'i¢ 2

(172)

Measure_Hent uucertainly is represented 1)5' Ix x 2 lnea.surelllenl error matrLx EE. where

En = [_-E.leE.'.,]=

(1t 417

(;21 (27

(k'l (h2

(173)

The Ix" x IX. cova.riance matrix for error vectors En.,,, and eE.,,, for m and n = 1 a,ud 2. respect ively,

L,_denoted t)5' _E,,,,,.

For Ix calibra.tion [ll0aSllt'elllellts, the Ix" x N o]]t, pt]t, nla.trix Y is given |)5'

Y = (Z + 6Z)C +EE (174)

where K x 31, input error matrix 6Z is given by

5Z = [0/Sx. 16x..,] =

0 5xll _a'12

0 6x_l 6x2_
(17r_)

The 2 × 2 covariance matrix of input error vectors (Sx.i and 5x..i is denoted 1)5' E%.

_x ij ]O',\-ijl 1 O'\'ij 17

O'Xij.I 2 O'Yij2. 2

(176)
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Let input vectorx I)e random with zero-mean uncertainty E_ = [e_l E._]. Then extended input

T [0 _'1 _*.2]; Ix" X 3 design ma.trL'_ Z has uncertainty matrix Ezvector zT has uncertainty %. = . ,

whose rows ez_ and ezj have 3 x 3 covariance matrix _z,,, where

0 0 0

0 O'X0.1 i O" \'it 12

0 O" \'ij. 12 O'\-ij._ 2

(177)

Consider process OUll)UtS y_ and ye separately; subscripts are omilted in the following computa-

tions. The lot al error vector _-v, expressed as ev = Ezc + _-F,, expands inl.o

_y

(.vii (" ] -[- (2'12C2 -{- (I

( .%] CI -[- (*.2.2C'2 + ('2

(2"1, I CI _ ('rh 2('2 -'_ ( I_

(17_)

The cova.riance between elements (,, and (.,,+ of total error veer.or (y is given t>y

coy ((_,;, (_,,) cT_]zuC + cri.i "2 " + cri.i (179)_ ClCrxj.11 -.{- Cl('.j('ZxOi.., + c"20.\,._2. 2"2

The confidenco interval a! level 1-_ fi)r eslimated coefficienl vector _ is expres,_ed as a three-

d in ,' itsio hal ell ipsoid as

(c - _:)TQ((. _ _) _<:_S: F,.I._:_(,) (18o)

The ellil_oid can be characterized as follows: Since Q is symmetric, it ks unitarily similar t,o a

real (fiagonal matrkx A: in particular Q = pTAp, where A consists of the eigenvalues of Q and

P is unitary: that is, ppT = I. MatrLx P consists of the set of orthonormal eigenvectors of Q.

Apply the transformation "/= Pc to coefficient w_ctor c. The confidence ellipsoid then simplifies

to the form

"fTA_/ : ")ll("_l -- _"l) '2 + '_"2("} 2 -- 5'2) 2 -_- A3(_/3 -- 53) _ _ :1S2_3.I,-3( O ) (181)

Let A denote the ith eigenvalue of Q. It is readily seen that the ith vertex of the ellipmid is
local.ed a.t distance

/ 3H2F"_+"-a (a) (182)
di = V Ai

from point c in the direction of the corresponding eigenvector, thai is, the ith column of P.
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The uncertaintyof the regression function, which is dependent upon extended input, vector

z, is expressed by the calibration confidence interval at, level of inequality (34)"

lY- Yl-< (zTQ-I z)'/'zS"/1.-a( ¢_)

< (t',, + 2f,,.,., + "2p,:_.._+ f,._._.y+ '2f,'_:,*,.<,+ r,:,:,*:_)'/'_._,'t,.-:_(.) (18:_)

where pii is the ijt, h element of Q-t.

After calibration, apply illp|lt Z 0 and make a single new measurement, where the nleasurenlent

uncert, ainl,y is _0. The prediction interval for out, pul .q. is obtained as follows with equation (39):

°'l' z T -I ,q't _,-a((_)ly-£1< 7+,,,Q _,,

= 7+_,,,+2p,._,, +'2t,,:_,..,+t,..,..,.,,_+'e_,_,,,.<,+_,:_j_ .','t,._:_{,) {J_4)

('onfidenc, and predict.ion inl.ervals for inferred input.s arc obtained as follows: let 1 × :2

veclor by = [,6!Ii /_?1".']denole the simullalteous two-dimensk)nal calibration confidenco int.erval

or prediction int.erva] defined in equal ions (183) and (184) l.hal, corresponds t.o observed oul pill.

vecl.or y_. Let. bx donol.e lhe uncertainly (ca]ibral.ion confidonce in|erval or prediction inlerval)

of inf,'fred input reel.or xll corresponding I.o obsol'ved oul.pul, yl_. Then bx is given by

wh (:['C

3x,_ = by.C_.) (185)

14. Concluding Renmrks

A generalized slal.istical treatment of uncertaint.y analysis for instrument, calibral.ion and

application ha.s been dew, loped. 'recl!niques for propagation of nleasuremenl uncertainties

through experimental dat.a reducl.ion equations and for presentation of final engineering test

data results, which are well-established in the literature, have not been presented. Inst.ead. tile

emphasis has been oil rigorous development, of the con'ecl, statistical t.reatlnent, of correlaled

measurement, mlcertainties, correlat.ed calibration standard uncerl.aint, ies, nonlinear nla.l.lwnlali-

cal inst.rmnenl, models, and replicated calibrations, for which only heuristic approaches had been

available. Correlal.ed bias errors may produce significant magnification of the uncertainties of
the calibration st.andard.

The effecls of mathemat.ical modeling error upon bias uncertainties have been quantified. A

design figure of meri! has been ,_t, ablished to assess the effects of experimental design on bolh

precision and bias uncertainties during calibration. Generally, predicted output variance due to

precision errors is minimized by calibrating only at, zero and fidl-scale ]oa.c[s. whereas predicted

output, variance due to modeling error is minimized by uniformly spacing t.esl, points l.hroughoul.

the operating envelope of the instrument..
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Calibration confidence intervals and prediction intervals of a new measurement, for both tile

predicted outpul, and the inferred input, are obtained as ftmctiol_s of the applied load. Previously,

instrument, nncertahlties were typically specified as constant, error bands or as a fLxed percentage

of t.he filll-scale input.

Replicated calibration is _lecessary to obt.ain adequate statistical sampling, to t.esl for

nonstationarity, and to test for significant bias uncert,ainty. Analyses of variance of the regression

residual sUHI of squares have ]wen applied to obtain individual estimated values of tile standard

error du,- to bia._ uncertaiilty and the standard error due to precision uncertainty.

Addilional a.ssociated uncertainty analyses arc in progress which apply the results of this

document t.o lhe force sensor modeled by a linear function, the strain-gauge balance modeled

by a _w(md-degree mull.ivai'ia.t.e polynomial, and the inertial model attitude _lL_or in I)il<'h and

roll mod,'led by a nonlinea.r coordinal.e t.rans'format.ion. The t.echniques ]lave also b_'eJl appli,.d

Io calit_r_llion ora skin fi'ic! icm ]>ala.Jlce modeled by _*qua.dral.ic i>olynomial.
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Appendix

Mat h em at ic al D er ivat ion s

A1. Prelhninaries

AI.1. E_e_ended Lea._t-Squa_'e,s Ana, ly._L_. Let lhe ixr,_trumenl calibration data input-output

relatio_Lshi 1) 1)e exl)ressed in matrix form as follows:

y = Z(: + eE (187)

where Z is lhe Ix x M,. ca libralion design mal rix, c is lhe M_ × 1 parameter veclor, y is the

Ix" x 1 (mtlmt olmervalion vector, and em is the Ix × 1 randotn meastlt'etnent error vector with

zero mean and Ix x Ix covariance mat rLx _E. It is assumed that ]_E ('all be expressed a+'_

_E = cr[U (I_S)

where Ix × K matrix U is symmetric and positive definite and measuremenl variance rr_ is lo

be del¢,rmim,d. Then U can be decomposed into the matrix producl

U = ppT (189)

where Ix x Ix" nla, lrix P is a nonsingular lower triangular inatrix (ref. 12). For notational

conv_ni_'nce lel p-T _ [p-I] T.

AI.2. LeTr_ma,_ and TheoT_m._.

Th(' following simple propositions, used frequently in l he develol)ment, arc proven for laler

use. A matrix is said to 1,e diagonalizable if it is similar 1o a diagonal nlatrix.

U-1 = p-Tp-1Lelmna 1.

Proof:

U(p-Tp-i) = ppTp-Xp-L

= p(p-ip)Vp-i = pp-1 = IK

where If,,: is the K x K identity lna.lr[x.

QED

(190)

Lennna 2. Matrix A is idempotent if and only if it is diagonalizable and its eigenvMu_ are
either 0 or 1.

Proof of Sufficiency: By hypothesis A2=A. It is well-known from linear algebra (ref. 12) that

t,he eigenvalues of A must _l.isaey the scalar equation A_ = A, from which it follows that A = 0

or A = 1. In reference 11, A is shown to be diagonaliza|)le.

QE D Stn']]cie nc y
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Proof of Necessity: By hypothesis the eigenv'alues of A are either 0 or 1. Since A ks diagonalizable

a nonsingular matrix l" exists such thai A = F IA [,-I and IA is a diagonal matrix of zeros and

on(_. It is ('lear l.hal IAI A = I a. Therefore, AA = A.

QE I) Necessity

L(:ntma 3. If tnalrices A and B have dimension ,\_ x AI and M x :\', respectively, t,hen

tr(AB) = tr (BA).

[)I'O0[':

V :\' A I

,,(AI_)=X(An)....=XX°..,+ .....
_/ V _/

=I2 Z<,,,".....=I2 m,,)......=..(i_a> 191)

Q l:; 1)

Lennna 4. If square Ina.trix A ks diagonalizable, then tr (A) = tr (A). where A is the diagonal

mat rgx of eigenvalues of A.

Proof: Fly hypothesis there exisls nonsingular matrLx I' such tha! A= I'AF -1 (ref. 12). By' using

l,_'mma :_,

tr(A)=tr(l'AF _)=tr(F-LFA)=tr(A) (192)

QED

[l_,lllllla 5. For N x A: ma.trices A an(t B, tr(A + B) = if(A) + tr (B).

Proof:

A' V \'

'_(A+m=Z;(°,,.+<,,)=X.,,,,+F+_....

= tr (A) + tr (B) (193)

Q k; I)

Lenuna 6. If matrix A is idempotent, then rank (A) = tr (A).
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Proof: By Lemma 2, A is diagonalizable and its eigenvalues are either 0 or 1. Then, by Lemma 4,

tr(A) = tr (A), where A is the diagonal matrix of eigenvalues. Hence, rank (A) = tr (A).

QE I)

Lenuna 7. If h × K matrix A is idempotent, then I¢ - A is idenqmtenl with rank K - rl,

where rl = rank(A).

Proof:

(IK -- A)(I¢ -A) = I K - 2A+ AA = I¢ -A

By l,emmas 5 and 6, rank (I¢ - A) = Ix" - r_.

QED

Theorem 1. Let '%'NIl = _Tw_ where 1 × N vector E is normally dislrit)uted with covariance

ma.trkx E/. = o'_IN and W is an iYx N symmetric matrix with rank r. Then ,q',,u/cr_ is chi-_tuar_"

distributed with r degrees of freedom and expected value r if a,ml only if W is idempotent.

Proof of Necessity: Since W is ideml)otent, by Lemma 2 its eigenvah._s are either 0 or I. Hence,

there exisls an 3( x A' Jna, trix Fsuch that

W= FVlwF (194)

where FTF = IN, and Iw is diagonal with r ones aud N- r zeros. Nole that Iw = IwIw. Lel

(w = IwF_. Then

Moreover,

(_'(w = e-'rFwlw Fe = eTwe- = S',,'w

r'_w = g [(w¢_v] : IwF_EFTIw

= cr_-IwFFTIw = @Iw

(1.%)

(_96)

Therefore, (w/cry: is normally distributed with covariance matrix Iw. Thus, ,b_,.u-/0"} equals the

sum of squares of r independent unit variance normal variates, and therefore , su-/o'_- is chi-

square distributed with r degrees of freedom (ref. 7). The expected value of ,";'su is obtailmd by

using Lemma 3 and equations (195) aim (196) to yield

£[£'s,,] = E [tr (£T£w)] =t; [tr(_w_T)]

= 1.r (E¢w) = o-_tr (Iw) = a'_r (197)

QE D Necessity
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Proof of Sufficiency: By' hypothesis ,%n,/Cr_ is chi-_uaze distfibut.ed with 7"degrees of freedom

and, hence, equals the sum of squares of r independent, zero-mean, unit-variance normM variates.

Symmetric matrix W can be writt.en as

W = I'TAw F (198)

where :\" x N diagonal matrix Aw contaills r nonzero elements since W has rank r. Define

(w =_ A_/l'e. where the elenlents of diagonal mat.rix "'w_l/2 equal the _lua.re roofs of the

correspondillg elemenls of Aw. Not.e that (w conl,a.ins r nonzero elements. Then

_'T(w = _-TI'TA'0,'I'_ = tETwIE = £'NII (199)

But
e T _tl/2p_-_ pTAI/2 " -I/2pFTAI/2 "Ea_ = "[¢w¢w] = :'w' "--'_' -'w = _';-:_w .... w = c_Aw (2oo)

-, 2
If any nonzero elelnent of Aw does not equal 1. the hypothesis l.ha.1. ,b.su/ar equals file sunl of

squa.res of r imlel)endent unit.-variance normal variates is contradicted, llence, diagonal matrix

Aw contains only ones and zeros, and by I,emma 2, W is idempot,ent.

QF D Sufficiency

Theorem 2 (ref. 10). l,et eTe = _1 q .... for 1 _< m _< M, where 1 x N random vector e is normally

disl.ribut.ed with covariance matrix IN, q,,, -----e-TQ,,,e, and nolmegat, ive indefinite :Y × A: malrLx

Q,,, is symmetric with ra.nk r,,,. Then the variables %, are independent chi-square disti'ibnt, ed

random variables if and only if _ r,,, = N. for 1 _< m _< M.

Proof of Necessity: By Theorem 1, eTe is chi-square dist.ributed. ALso, by ]lypolhesis

where Q,,, has rank r,,, and

_l 't/

_-Te= EeTQ,.e= _7_';.,
m = I m = 1

(2ol)

.A/

r,,, = _'

|11=I

(202)

Since Q,,, is symmetric and nommgative indefinite with rank r,,,, it. can be expressed in the form

Q_I_ T= P,,,A,,,P,,, (203)

where P,,, is orthonormal and A,,, is diagonal, containing r,,, positive element.s and (N - r,,,)

zero elelnents on the diagonal. After rearranging its elements, matrix Q,,, can be written in

partitioned form as
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[A,0jrP][ ,p+] ,,,__
q.,= PL, .... -o- ,, o ....

T p,. (:204)= P,. A,, ,

I py,], p,., has dimensiou r., ×N, P_ has dimension (N-v,,,)×A',whc'I'¢" 7k 'y Xz\ 'y lll8,[irix p,T = [efT , ......

and A.., has dimension r,,, × r,.. Define r,. × N matrix l-t... , a,s

h, is semi that R_,

= AZP,.,,,

T
has rm,k r,, and lhat R,. P,. = Q,,,. Als) &'filw r,, x 1 w'ctor _,,, as

(20a)

,L,, -= R.,.x (:_()6)

where x is an arbitrary A,' x 1 horn,ally distributed randoJu veclor with covariancc matrix IN.

T X TThen, inner l>roduct, q,,, = _,f,,, = Q,,,x forms A' x N tnat.rix R,,. fronl l.hc sel of M nmt rices

Rr,,, 8.s

(207)

h. follows from equation (202) that 1% has ra.nk A' and is therefore nozt.dngular. (:onstruct A'x 1

vector _ froIll Sllbveclors _1 ..... _lt defined ill equa, l,ion (g0(J) as

h, follows thai,

,_ = = R,.x (2o_)

xTx ExTQ,,,X E T T_ T T= = _,,,_,,, =_ = x R,. R,.x (20_))

Since equation (:209) holds for a.rbitrarv vector x, it, follows that T. + R,, P_. = IN = P_,t-{,, T. and.

hence, 1_, is orthonormal. The ('ovaria, nce matrix of _ is found to be

(21o)

Therefore, the covariancc matrix of ¢,,, equals In,. It then follows from Theorem 1 that random
Tvarial>}e q,,, = _,,f,,,, is chi-square distributed with r,,, degrees of freedom. Moreover, since R,. is

orl.honormal, the set. of ra.ndom varia/)les q,,, is nmtually independent.

QED Necessity
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Proof of Sufficiency: Construct matrLx R,. and vector ¢ as before. By hypothesis, tile elements _,,,

are mutually independent with chi-square distributed inner products; thus, covariance matrix _¢

contains 1' = Nr,,, ones Oll the diagonal and zeros elsewhere. Since xTx iS chi-square distributed

with N degre_ of freedom, it follows from equation (209) that _T_ is likewise distribul.ed. Ilence.

rank _ equals N and N = r.

Q E I) S uffi ('ie nc y

A1.3. Linear Lea._t-SquaT_._ E.stimation.

From equation (1S7), note lhat the expected value of y is given t)y

= Zc

Define IX. x l Ira nsformed observation vector v as

(211)

v _ p-ty (212)

I')t uation (187) now becomes

v= P-IZc+P-lee= P-IZe+ev

wher'e /x x 1 v,'ctor ev _ P-let.. Immediately the expected value of v is

(213)

t_v = g[v] = P-IZc (214)

Thell the A x Ix covarian('e ma.trLx of v (whi('h equals the ('()variance matrix of _v a.s well),

(h'nol('d t)y _v, is oblained with the help of equations (188) and (189) a.s

_v --_ _J[(V -- llv)(V -- j[tv) T] = P-Ig.[_4]P-T

_- p-IZEp-T = @p-IppTp-T = rr_IK (215)

Thus the elements of v and of e.v are uncorrelated.

Based on t.ransfonned output observation vector v, the desire is to estimale the value of

pa.rameter vector e, denoted by e, which minimizes the sum ofsq uares ,q'._'o given by the following

inner l)roduct:

,_'Q ---- (V -- Ittv)T(v -- ltV) = (V -- P-IZe)T(v -- P-tZe)

Note that equation (216) may I)e rewritten a,s

(216)

S,_'(2 = (Y -- ze)Tp-Tp-I(Y -- Ze) = (y -- Z(:)Tu-I(y -- Ze)
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It, is well-known (rcf. 7) that the lea.st,-_uares value _ which minimizes equation (216) is obtained
as follows:

= [(p-Iz)T(p-Iz)]-F(p-1Z)Tv = (zTp-Tp-Iz)-IzTp-Tv

-- (zTu-Iz)-IzTp-Tv = (_-IzTp-T v (218)

where AI,. x AI,. generalized nlOnlenl matrix Q of the experimental design is defined as

(_ _-- zTu-Iz (21())

It is to ]>e noted that QT = Q. With the }tell) o[" equations (213), (214). and (218) the ext)ected
va,hw of _ is found I,o t>e an unl>iased esl, inlal,e of c as Follows:

{;[C] _-- (I-IzTP -T _,[V] ---- (I-IzTu IZc

= Q-tQc = c (220)

Th(" covarialwe ma, trix of c is found by first combilling cquations (213) and (218) to ot>tain

-e= Q tzTP T(P-IZe +e_)--e= Q-IzTu-Ize+Q IzTP Te,,--C

= Q-IQe. + Q-IzTp-T(:v -- (: = Q-IzTp-Tev (221)

It is seen thai i_-e is norlnally dislrit)uled since e,+ is nornlally distril>uu,d. From equations (219)

and (221) it, Follows thal _I: × Mz ('<)variance matrLx E^ is giw, n l>y
c

"_c---- _ [(i_.- (;)(i_,- e) T] ---- Q-'zTP -T E[_,,_T] = P-'ZQ-'

= cr_Q-tzTu-IZQ-I" = rr;Q" -IQQ-, = o-2_.Q-' (222)

Defhw K x 1 t>redi<'ted out, l>UI vector _¢ l)y

_----P-_Z_ (223)

and define K x 1 residual vector _,, - v - _'. Using equations (21;)), (2t8), and (223) yields

e,, = v -- v = v -- P-IZQ-IZTp-Tv

: (IK -- p-lZQ-lZTp-T) (p-iZe + e-v)

: (i K __ p-1ZQ-IZTp-T) Ev : WK_v (_24)

where K x K matrLx WK is defined as

and K × K matrix IlK is defined as

W K _- I u -- _-1K (225)
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ilk -- (P-IZ)Q-I(P-IZ)T (226)

An integersubscriptwill be appendedasneededto d_stinguishthe dimensionof nlalricesU,
W, _, Z. Q, and I for nonreplicatedandreplicatedexperimentaldesigns.

It ksseenthat "_K iS both symmelric and idempotent a._ follows:

: [p-'zq-'zTv *]
= p-lZQ-I zTu-lZQ-I zTp-T

= P-IZQ-IQQ-1ZTp-T = P-IZQ -IZTP-T = IlK

Also, using Lemn,as 3. ,i, and 6,

(227)

ra.nk(_K) = tr(P-IZQ-IZTP -T) ---- tr (Q-IZTp-Tp-Iz)

= tr(Q 'Q) = Mz (22_)

Then t)y Lemma 7, WK is i(lempotenl with rank Ix - M,.

II is seen that ev is normally distributed. From equation (224), the expected value of e,_ is

zero. The covariance ma.lrix of b,, then is found by using equations (215) and (224)as follows:

_v
:,," : w,, c

9 T

= aTWKW K = cr_WK (229)

The M, x If covariance matrix of _ and e.v is shown to I)e zero (ref. 7), and with the hell) of

equation (215),

coy (_.,(Sv) = £ [(fi - c)G {] = Q-'zTP -T £ [ev _T] (IK -- P-tZQ-'ZTP -T)

: cr_ (Q-'ZTP -T- Q-_zTP -x) : 0 (230)

Thus _ a.nd (;v are uncorrelated and independem.

The residual sum of _luares £'_._, defined as the stun of _/ua.res of the elements of residual

ve('lor (_,,, is obtained with the hel I) of equation (224) as

,gS' K _ _vTev T T T• ^ = e-v WK _v: _v WKWK _v (231)

8[S_] = _-( K - ah) (232)

From equation (228) and Theorem 1, S,_,F/cr'_. is chi-square distributed with K - M. degrees of

freedom and expected value K- M..
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Therefore,5'_r,denotedthe stal_dard error, is defined as

( '>',S'E= K-M,./

Note that. 5'_ ks an unbiased esthnate of 0r,:.

A confidence ellil)_)id for c is now obtained. I_valuale the quadratic form

'%'Nq" = (C -- _':)T(_((, __ _:)

with equation (2:21) 1o yield

(2a3)

,%,. -----((. __ _)TQ((: __ _) = ('Tp-IZQ-IZTp-T_v ---- ("vT'iZK_,,' ( 2a4 )

t{ecall that K x K matrix _IK was shown by equation (228) to be idemt)otenl, with rank M_.

Then by Theorem 1. it follows that ,%(./cry. is chi-square distributed with ,_1,, degu'es of freedom

all(] expect.od v_-due kl,. Since E- e and _,_ are i|ldependelll., ,q.s(' and ,s'._.(eare independent..

ftence, the ratio t"= [,%.,./(cr_.M,.)]/{,S'.,.e/[cr_(l(- :_I,.)]} is /;'-distributed with M,., Ix- M,.

degrees of freedonl (ref. (J). Therefore, a COtlfidetlce interval fi)r _ a.t ]ew'l o is gNen by the

following inequalily:

(e -- _':)TQ((:_ _..) __<_]z,%,_.p,l,.l_ -:W,.((I) (2;{'r'))

where F/.i((_ ) is the 1 -o tail of the ].'-dist.ril)ut.ion with i, j degrees of freedom and ,%: is defined

in equation (:233). The quadra.tic fornl of equation (235)defines a.n ellipsoid in M,, dimensiona.1

hyperslm.ce termed the coTtfid_,(( (lllp.sold.

Given 21lz x 1 inpul vector z. the corresponding predicted scalar outpul.._ is given by

From equation (220), the expected value of._(z) equMs zTc. With equations (222) aim (236).

the variance of _(z) is obtained as follows:

_(,) - e:({._(,) - t-[._(z)]}_) = e:{[_*(¢ _ a)]_}

= e:{z_(_- a)(_ - a)_z] = zT_[(c - a)(,: - a)T]_

= zT_cz = _zTq-'z (237)

Then the norn,Mly distributed variate _(z)/[o'F(zTQ-'z) '/2] has zero mean and uni* va.ri_,,ce.

where ¢5:_ y ._. Recall that , .s.r:lCrr is chi-square distributed with /( - 3,17,degrees of freedom.

Then the ratio t defined a.s follows has ,_tudenl.'s l-distribulion wil.h /( - _/,. degrees of freedom

(tvf. 7):

e_(.)/[._(.Tq-,_),q
t = ' (2:_s)

&,,:/[o>( z, - a1,.),/_]
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('ombineequations(233), (237),and (238) to obtain the calibration output confidence interval

defined t)y l lw following inequality:

]:,/- 9l _< (zTq-'_) 'p'& t,,._,,.(./2)

where l,,(o) ks the _-percenlile of the two-ta.iled l-distribution with 7t degrees of freedom.

A2. Effects of Process Modeling Error

(:onsider a process f(c, z) modeled as a linear function of extended inl)ul vector z

f(c,z) = zc

whereas t I,' actual fu nc lional rel at,io_h ip is

where ")(z) is t, lw modeling error.

a('cordance with e(tualion (187) t)a.sed on the linear model in equation (240).

calibration outl)ul is then

(23,q)

(2,10)

f(c.z) = zc +')'(z) (241)

Let the system be calii)rated with calibration design Z ill
Tile ob_q'w_d

y=Ze+_'(Z)+eE .

where _,(Z) denotes tile K x 1 vector of lnodeling errors

"_(z,)

"y(z) = "

")(zf,)

Estimated coefficient vector _ is obtained from equations (218) and (242) as follows:

---- Q-IzTU-ly = Q-tzTu-I [Ze -+--/(Z) q- eE]

= i. + Q-IzTu-'[3,(Z + _E]

The expected value of i? is seen to be

zTu- I_/,(Z )e:[_]= ,-+ Q-

Predicted output vector _ beconms

= Ze = Z('. + ZQ-IZTU -' ['7(Z) q- eE]

(242)

243)

244)

245)

(24(i)
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It followsfi'omequation(246)that the expectedvalueof predictedoutput vector_ is givenby

= + ZQ-'zTu-' (Z)

Combine equal.Jolts (242) a.ml (246) with (225) to obtain residual veclor &,. a.s

247)

_,v--- v -_ = P-'(y -_)= P-' (IK -- ZQ-'ZTP Tp-,) [_/(Z) + eel

= (IK -- P-'ZQ-IZTP -T) [P-'_(Z) + ev] = WK[P-'q'(Z) -{- ev]

The expected value of i'_.,,is ,_'cnto l)e

/[&_] = WKP-'-/(Z) (2:19)

After combining equal ions (215). (2,18). aml (2,1.()). l,h(' covaria, nce ma| rix of 5,, is fouml to 1)e

- :( )][;:, - = (2a0)

Sill(:(" W K iS ideml)otent, lh(' residual sun, of squa.res is ot)tained fron, equation (2,/8) a.s follows:

aTa [P-'_/(Z) + ev]TWK[P-'_,(Z) + e_] (251),q',_,'E -- ('v ('v =

Because WK has rank f'[ - Mz. the expected value of ,q',,_. is

t:[S,.::] = (h - M,.)cr_: + _,(z)Tp-TwKp-I')'(Z) (252)

Note that ,':"F = [,q.,._-/(h"- M,.)] _/'' is no longer an unbiased estima.te of cr when n_o(h']ing error

i(Z) iS llOllZero.

Consider arbitra.ry input vector z. The corresponding output y, obtained with equation (241),

is

y = f(e,z) = zc +'_(z) (253)

The predicted outpIll is y = ZC.. Prediction error by k_ then

by - y- _ = 7(z) - ZQ-'ZTU -'[_(z) + e_] (254)

The expected mean-square prediction error is obtained from equalion (254) as

o'£(z) -- _,[_2] -- [5(z)- zQ-iZTU-I_/(Z)] 2 + o"_zTQ-iz (255)
Y
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A3. Nonlinear Least-Squalvs Estimation With Input Uncertainty

l,et (: denole the _I,. x 1 l)arameh_r vector; (z + bz), the 1 x M,, stochastic inpul vector, where

z is the 1 x ,]1_ lmluina] input vector and bz is l.he 1 x M,. stochastic input mlcerla.inty vector:

# F, the measurement uncerta.inty, a. zero-n|ea|t random variable. Then the process oul.l)Ul, is of
the f()rm

y = f(c,z + ?iz) + e., = f(c, z) + ?iy

The un('erl.ahlty @_ ()f the kth observation is then

(250)

V_']I(" r('

@, = ?if.h + _:, (257)

?iL, = f,(c,z;)?iz,

and the 1 x M,. ve('lor f,.(c,z,) is defin('d as

(25_)

Delta(' Ix x 1 error vector ?if,. as

[Of(c,z_,)]f,_((-,z,) - / /-_z
(25.())

?if,, =-- [Of:,... ?iL:,] T (26o)

It is seen t.hat ?if,. is given by

[ L(c'zl)?iz'_ ]
?if, = . (261)

f,_(c, z,, )?iz_

Not.e that subscript z is a.ppended to indicate thal ?if depends on the entire design ma.tnx Z.

The K x K cova.riance matrix of (5t",. is given by

The I\ x 1 output veclor y is obtained by ext,mding scalar equation (256) to the following K x 1

vector c qu a,l, ioll

y = f(c,Z) + ?iy (263)

where Z is the K x M,. design matrLx, and ?iy is the K x 1 zero-mean combined output uncertainty

w-ctor given 1)y
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fY =/_f_+ eE

and 6y has A x I\ combined output, covariance matrix _v which can be expr_sed as

(264)

Ev = Zf_ + E_ (265)

The assmnl>t, ion is that Ev can l>e expressed in the form of equation (188), namely Ev = cry.U,

wkere U satisfies the conditions of equal ion (18,q), with transformed Ix" x 1 outlmt vector v

defined ill equation (213), and ('qtla, l,ioll (26:{)l)ccotlles

v = P-If(c,Z)+ 6v (266)

where I\ x 1 uncertainly vecl,or _v = p-I_y and l\ × K lna.t rLx P is defined as in equation (18!)).

The expected value of ,67 is zero, and llw CXl>ecled value of v is

It,,-- ,';[v] = P-'f(c, Z)

The Ix × l\ covarian<'e matrix of ,Sv, <lenote<l l>y E,,, then becomes

(267)

E,, = £[SvSv T] = P-' £[/_y/_yT]p-T = c/_.p-_up-T = a;"-Iu

It is seen that bv is uncorrela.l, cd and normally dislril>uwd whenever <_y is

distributed. As in equation(216) (lefim'thc stun of squares as

,S'.,,.Q _ (V -- II.v)T(v -- fly) = [V -- P-if(c,z)]T[v -- P 'f(c,Z)] (269)

To minimize 5,'n,_4(ref. 13) compute its gradient with resl>ecl 1,o c and equate the resul|a.nl 1 x +1I_
set of equatioIls to zero as follows:

h--2 \ __--cJ = [v-P-'f(c'Z)]TP-' _e-c(c'z)

= [v - P-'f(c,Z)]TP-'E = 0 (_7o)

where h is a function of independent arguments v, c, and Z and has dimension 1 x M_,

[v - P-If(c, Z)] is K x 1, P is K x Ix, and K x M_ matrix F,, is defined as

F_ - [_(¢, Z) =

Ofl(c.z I )

i_" 1

Ofl qczl I

0¢'|1 c

t_ft, fc,zl,-) :_fl, c.zj, )

Oc I i#' _l,

(271)

47



Finally 0 denotes a I x M_ vector of zeros. Equation (270) is solved numerically for E by Newton-
Raphson iteration or similar method. Necessary conditions for th(, existence of a solution are
now obtained.

'lb obtain the uncertainty of_ denoted by 5_, compute the total differential ofe(lual ion (270)

and equate to zero as follows:

6h = 6v T L0vj

wh(,r(, /( x M_ matrix [0h/0v] is seen to (,qual

+ 6_TR = 0 (272)

Ovl

and flw M_ x M,. matrix R, is defined a._

= P- iF,. (273

IF{.--

iJI"1 1_¢'_17

.2.

Oc I Oc U z

(274

A. necessary comlit ion for the existence of a. solution to equation (270) for c and to equation (272

for N'i is tha.l matrix R t>e nonsingular in some open interval about _ (ref. l l).

To evahmt_, R diff('rentiate equation (270) with resl)ec( to e a.s indicat(,d 1o obt.Mn

I_, T -T -1 IV -- p-I z)]Tp-1=F,.P P F,.+ f(c, i F,,.=FTU-IF_+H_

where He is defined as

(275)

HE _ [v -- P-tf(e,Z)]TP-1 C::'F_ (276)

The M,, x M_ x A array F,,_ is defined as (he partial derivative of M_ x A array F T with respect
to v('ctor ('; l,hat is,

z).] (27;)
F_- L oc J

where the ijkth eh, ment of F_,.(c. Z) equals the second l)ttrl.ia.l derivalive of (.he kth element of

fimction f(c,Z) with respect to ci and ca as follows:

O'_ft.(c, z _.)
f(',_.Ua"-- (278)

c')ciOcs

48



for 1 _< i,j < Me, and 1 _< k _< I\. The,,_-_ operator denotes formation of the inner producl of

1 x A row vector Iv - P-If(e,Z)]WP-J with each K x 1 column of array F_. Thus the ijth

element of M_ x Mc matrix HE is given by

hr;j = [v - P-If(c, Z)] x P-' F,_. ,_. = evTP-I Fee ij (279)

for 1 _< i.j < M,,, where F_.t i denotes the ijth (h × 1) column of a.rray F_, and

e_ = v - P-If(c, Z ). After least-_tuaresestimation of vector (", veclor ev becoiHes residual vector

_,, defined sub_quently. If norm [I (5,, l[ ks small, matrLx HE can be neglected in equation (275).

Then R is closely apl_roxinlaled by

R _ FTU-IF_

Note that matrix R ha,,_ rank M_, i.e., is nonsingular, only if rank (F_) =

equations (272) and (273) and _)lv_, for ;'].f_ × 1 uncerlainty veclor tii', to yiehl

M_.

(2S0)

Combine

/_fi = -R-IFTp-Tbv

From equation (281), 6c has zero mean and covariance matrix as follows:

Z,. = R IFTp=Tx]vP-IF_R, -1

2 I T -I -I ;_ -I
=avR F_U FoR =c(.vQ _

where :_I_ x M_ matrix Q,. equals

(281)

(2s2)

Qc = [R -I T -I -IF_U F_R ]- (2s3)

Note that satisfaction of the a.l)l)roximation in equatiotl (280) is a sufficient condition, but not

neces_.ry, for the existence of matrix Q_. ];](ltm.tiotl (280) implies that

Q_ _ R (2_4)

A3.1. Residual Sum of Squave.s.

As for calibration design matrix Z and estimaWd parameter vector _,, define K x 1 predicted

output vector X_ as

9 = P-'f(fi, Z) = p-i [f(c,Z) + L/ifi]

= e-' [tic, Z) - F,,R-'FTp-T_v] = P-'f(c,Z)- _F6V (285)

W }le r e

_-ts = (P-IL) R-' (v-'L) v

As before. /x × I residual vector _,. is defined as

(2s6)
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_v - v - _- = P-'[f(c, Z) - f(_, Z)] + 6v (287)

l_et 6f,. _ f(c,Z) - if&Z), which is closely al)proximat.ed by bf,. = F,.(c,Z)g_. Then

,'quation (287) can br expressed ill differential form a,s

_, = P-IF_(c,Z)6_ + bv

Conlbine equat.iot)_s (281), (286), and (288)to obtain

_,V he ro

ev (IK - P-LF,-R-I T -T= F,.P )bv=Wv/,bv (2s!))

WVK -- IK - _F (290)

Subscript h. al)l)emled to denote the matrix dimension, is trealed as an index. If al)l)roximation

in equation (2N)) holds, then [tF is ideml)otent a.s is shown in the following equation:

_F_tr" = P-IF,-R-IFTp-Tp-1F_R-IFTp-T

= P-IF,.R-J (FTU-T_) R. -I F,.pT -T

= P-IF_R-IFTp-T = _-_v (291)

By using Lemmas 2, 3, and 6,

-I T -T -1ra.nk(_s) = tr (P-'F_R-'FTp -T) =tr(R F,,P P r,,)

= tr (R-_FTU-T_) = tr (a-'R)= ]tt_ (_9_)

Therefore, by Lenmm. 7, Wry, is i(leml)otent with rank K - M_.

The ('ovariance matrLx of_,. is given I)y

and the residual sum of squares ,%'F is given by

( 2.O3 )

,_,..../__ _. Cvev=T_ = 5vTWF,, 6v (294)

Then t)y Theorem 1, ,';'.s'Eis chi-square distributed with Ix - M,. degrees of freedom and with

expected value

:(,%.F) = (];- M,.)+,_-

An unbia.sed estimate ofo-v is provided by standard error ,q'r, where

5O

(2 .% )



'%= k-_l,_

A confidence int, erva] for o%. at, confidence ]eve] _ is given by

(296)

(.t,- a_)'_,5'_- (f_- M_)I/_& -
< m- < (597)

\! I+,, )/'e _ ( I-. )/2

where _ ,, is the (_ percentile value of the chi-_l ua.re distribution with /x - AI_ degrees of freedom.

A3.2. Confidence InteT,.oal.s.

A confidence ellip_)id is now obtained for _. Let

,_'.s'+'= ((: - c)TQc(C -- c) = ,_vTp-IF_R-IQ, -R-IFTP-T'Gv

= +ivTp-IF_R-IFTp-Tbv = 5vTf_I_,SV

Because I_F kS idempotent, ,S'._++,/cr_.is chi-squa.re dist.ributed with i11_ degrees of freedom by

Theoren, 1. Hence, the ra.tio f: = [S,.,,/cr;{.Al,,]/{,q',,r,/[cr_:(f\- AI,.)]} is F-dislributod with

A],, Ix - M_ degrees of freedom (ref. 7). Then 1.he confidence ellipsoid a.t lewq o for _ is (h,finod

by

(c - _)TQ_(c - _:) _< AI¢S_.F_I,..a-_,_I,.(+_) (2.().())

For arbitrary input vector z, the corresponding predicted scalar output, denoted l)y ._(z) is

.O(z) _ f(_:, z) (300)

The uncertainty of _(z) due to calibration uncertainty alone is obtained with equalion (581) a.s

f_ = .V - Y = f(e, z) - f(E,z)

- = -fT(e, z)R-' F_P-'bv ( )a01

where M: x 1 gradient vector L(c,z) is defined as

[a f/,:,, )]f_(c,z) = L Oc (aos)

It follows that 6_" is norma.lly distributed with zero expected value. Then the expected va.lue of

h(z) i.+

E[_(z)] = f(c, z) (303)
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Tile variance of predicted output _0(z), denoted the variance function, is obtained froll/ equa-

tion (:3t)1) as follows'

ci_(z)- ,'.'[6._ 6_0]= fT(e,z)R-IFTp-'E[t_v 6vT]p-TF,-I-{,-'fc( e, z)

c_.fT(c, z)R ' T -I I= F,,U F,,R- L(c, z)

= rr_-fT<c, z)Qc' L(c, z) (304)

If the approxinmtion in equation (280) holds, then equation (304) simplifies to

" = z)R L(c, z)c;(z) o'S.if((', -' (:305)

has zero-nwan and Illlit

%./

variance. It was shown previously that ,%F/c_" is chi-square distributed with K -M,. degrees

of freedom when the al>proximal ion in equation (280)hohls. Then the ratio l defined below has

St, udent's /-distribution with Ix-M,. degrees of freedom.

t = (30(i)

Then the outl>ut I>rediction confidence interval al o confidence level b+given by

tv - < fga, z)]'/%t,,._.,,,.(,?2) (307)

where t,,(o) is the a percelltile value of the two-tailed /-distribution with n degrees of freedom.

A4. Analysis of Replicated Calibrations

In lhe following development, subscripts K and NK are appended to matrices I, Z, Q, u,

and [! to distinguksh between single calibrations (K observations) and ret>licated calibratkms

(NK obscrvatiolts). Consider an arbitrary" K x M, experimental design matrix ZK for calibration

of a _ingh'- output sensor, which is replicated N times. The sets of int>ut loading uncertainties
arc seen to I>e intercorrelated alllong replications. The NK x Mz reldicated experimental design

Zr, rK is

ZNK z.1Zx

z.
= HTZK (308)

where K x NK replication ma,trLx H is defined as

H--[IK Ix ... IK]
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The following properties of H are used in tile subsequent development. The N x K matrLx

product HH T equals

HH T = NIK

and Nil x NK matrix product HTH equals

(310)

HTH =

IK

IK

IK • *

I K ..

I K ...

IK

IK

IK

For any N x K matrix A, the ,VN x NK matrkx producl HTAH equals

(311)

HTAH =

A A

A A

A A
i]

Lel DNK I)e an NK x NK block diagonal ma.l,l'ix conslruct.ed flora K x h matrix A as

(312)

DNK _--

A 0K ... O K

0K A . .. 0K

K * ' " " '0 0K ... A

where OK Ls a. K x K matrix of zeros. Then il, follows l,ha|

(313)

HDNKH T = NA (314)

A4.1. Single-Input Single-OuIput Process With UncovT_lated Uncerlainiies.

Over N replica.ted calibrations, let the elements of NK x 1 nlea_surement uncertainty vector _-n

1)e uncorrelated with :Vhx Nlf covariance nlal rix a_7INK, a.nd let the unknown bias uncertainties

of a single re.plication due to the calibratkm standard be uncorrelated with covariance matrix

<r_'.IK. Since the loading sequence is replicated, then

coy (:,..,:,.,)= d. (la. -tl = ,,t;:,,: 1..... N-l;,,,=1 ..... M,.)

= 0 (Otherwise) (315)

where za.,,, is the ruth elelnent of vector zt. and k = 1 ..... NK. Thlts, front equation (311), the

NK x NK covariance matrLx of design matrix Z is given by

_z = o'_HTH (316)
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Similarly, the NK x NK measurenlent uncertainty covariance matrix is given by

•) .i

Nr = cry-INK = CG:
IK 0K ..

OK IK ..

K " " "0 OK ..

0K

I

(317)

Noting that (r" "'r > O and a; >_ O, defim' conlbined oul, tm( covarianc(, matrix yl,v as

') T ')

Yl'v ----_E + _z = crrlnK + cr,:H H = (r; UNK (318)

W}I(_ I'C

UNK = InK + (_HTH =

(_ + 1 )I K "IK

.I_: (_ + 1)IK

a Iu "IK

(J_I K

OIK

(-- + l)IK

(:)1.9)

_LII(]

It, is r(-a,dily shown that

0 -2

,) (:_20)

UN_ = InK -/:?HTH =

( 1 - /3)Iu --i;_Ii

--fllK ( 1 - i3)IK

-3IK -3IK

-/_IK

•. -/_IK

• . (I--/_)IK

(:)21)

w lie re

3 - (:)22)
N a+ 1

Then AI,, x Mz generalized moment matrix QNK iS obtained with the help of equation (310) as
follows:

QNK = ZTKUN_ZNK = zTH(INK- L_HTH)HTZK

- N( 1 ' T_ - _ _)ZKZK (a2:3)
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Combine equariol_s (320), (322), and (323) to yield

QNK ---- °'_7 .zTzK (324)

Note fi'om equation (324) thai the portion of calibration uncertainty due to calibration standard

bins errors is not reduced by replication, whereas that due to mea.surenJent errors decreas_

rough]y as N -1/'2.

For the analysis of wariance tests presented subsequently in the null hypolhesis the input

uncertainty is assumed to be zero. Then or.,.= () and matrix UNK e(tuals INK; consequently, P

equMs INK in equation (189). For this special case, equations (308), (310), and (323)hnply that

(_NK T ZTHHTZ ,r T----- ---- 1\ EKE K -- I¥(_K---- ZNKZNK K

From equations (226) and (325). A'h x NK matrix _-_NK is given t)y

I_NK --_ -I T _ 1
ZNKQNKZNK HT_IK H

where h" x h matrix _IK is

(:125)

(326)

t_K = ZKQ_:_Z_ (327)

As shown in equations (226) and (228), _IK and _NK are synmlelric and ideml)olent with

rank Mz.

A4.2. General Multi-Input Single-Output Process.

Consider a general multi-int)ut single-output nonlinear proces'_ calibrated by tLsing experi-

mental design ZK replicated N times as before. The K x l output uncertainty vector ofa sing]e

replication, denoted by byK, is giw_n by equat, k)n (264). When for N replications NK x 1 output

uncertainty vector /_YNK is given by

(_YNK = HTt6fz + eE (328)

where K x 1 vector 6fz is given by equal, ion (261 ) with K x K covariance ma.trLx _]rzK = o'_2.UrzK,

given in equation (262), and where NK x 1 nlea,surement uncertainty vector ev, has NK x NK

covariance matrLx EE = cr_UENK. The lneasurement uncertainty is assumed uncorrelated
between replications and the K x K measurement covariance matrix of each replication is

a.ssmned to be EEK 2= crEUEK. Then

UEN K

UE K OK . . . O K

OK UE K . . . O K

OK OK .., UE K

(329)

and from equation (328),
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• 2

_YNK ---- _E -'F _-']'fZNK ---- O'_TUENR -'F o'xUfzNI (

where N If x Nil covariance matrix _fZNK is given by

---- o-_U yN K (3:30)

From equation (330), UYNK

UYN K : UF, NK + (I:UfZNK :

_rZNK = a_'UrzNK : tr_HTUfzK H

can be expanded into

UENK + -Ufz,_ c_U_zK

oUfzK Ur_ + oUrzK
(_UfzK r_U _zK

ctUfz K

(1 Ufz K

UEK + oUrzK

(aal)

(a32)

where, is defined in equation (320).

The invert" o[" N/_ x Nil malrix Uv_K can I)e computed in l.erms of/f x /f matrices U_K

and UtK as follows. Define /f x N matrix B as

B = [UE_ + (A' - 1 ).Urz_]-' U_zK (333)

and h x K matrix A a,s

A - {UEK + oUtz,_[IK --(N- 1)B]} -) ('_34)

If the inverse mat, rices of equations (333) and (334) exist, then U -I can |)e showll to ])e given' YN K

by'

-I
UyN K : DNK -- HTBAH =

A -BA

-BA A

-BA -BA

(aas)

where NK x Nh block-diagonal malrix DNK ks co_tst.ructed from N replicatiol_s of K x K lnatrLx

(A + BA) a.s

DNK = (3:]6)

A+BA OK

OK A + BA

:

OK OK
oK]OK

A+ BA

i:or the linear case 3I, x 2_I, moment matrix QNK can now be conlputed in ternts of K x K

matrices as follows:
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QNK T -, = (ZTH)UvtNK(ZTH)T= iNK UyNK iNK

It can readily" be seen from e(tualioltq (31,1), (335), and (336) that

(337)

HUTv_NKHT = H(DNK -- HTBAH)H T = N[IK -(N - 1)B]A

Hence for the linear ca,,,_,

,r T
QNK ---- :\ ZK[IK - (N - 1 )B]AZK

(338)

(33.())

For the nonlinear ca,_, a, singh' replicaJ, ion of exl)erimental (h:sign ZK, evaluation of equa-

tion (271) yiehls I\ x _'_I_ maJrix F_. Then over .,\_ replications of ZK, with design matrix

ZNK given l)y equation (3()8), equation (271) yields NK × _]1_ Jnatrix F_NK = HTF_K. If ('qua.-

t ion (275) holds, it follows fl'om equal ion (338)lhat

R_FT_NK U-'VNKF"N r.: = FTK HUvlNKHTLK" -

= NFTK[IK -- (N - I)B]ALK (340)

Equation (340) t)erlnits coml)uta.tion of confidence a.ml pr(,(liction imervMs fOI" rel)licaled ca.li-

bration data in terms of If x t\" matrices: thereby, required computer storage and (:omputal.iona]

resources are reduced when N is larg('.

With reforenee 1,o equatiot/s (188) and (189), the analysis of variance null hyl)othesis assulnes

that if matrix Uv_ -- I_; then malrix P = INK. Ifequa.lion (280) holds, lhen for the troll

hy[)othesis ,.l/_ x _ll_ matrix R. l)e('omes

R _ FT_NKF_NK ----FTKHHTF_K"

_ T= , F,_ F_K (341)

11, follows that NK x NK tna, t,rLx _tFNs:, given in equation (286), is given by

-I T

_FN K _-_ F_NK R FeN u = NHTF_K(FTK F_K )-'FTK H

1 T

= _H _r, KH (342)

where Ix" x K matrix [_w is obtained from equation (286) as

_FK Fc K T )-I F T (343)= (F_KF_K _K

As shown in equation (291), matrices _FK and __FNK are symmetric and i(lempotent with
rank M,..
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A4.3. Analy,_i,_ of Variance of Replicated Calib_ntion,_.

Analysis of variance of replicated calibrations provides tests of significance for the presence

of bias uncertainty due to input loading errors or matllematical modeling errors, as well as fox"

nonstalionarity of esl, imated parameters. The analysis of variance is developed ill this seclion

with single-input single-output process llotat, ion. Note that simi]ar results are obtained for the

general multi-input-single otltput ca,se by replacing _NK, _K, WNK, WK' and M_, by _lrNK'

_K' W_NK' WFK, and ./ff_, respectively.

i,'t the null hypothesis (ref. 7) a_ssume that input loading tmcertainties and modeling errors

are zero and that Nil x 1 measurement uncertainty vector eE has Nil x Nlf covariance matrix

_E : a_.INK. Then Nlf x Nil matrices U and P are both equal t,o INK and do not appear

in thr following equations. Transformed oulput vector v is equal to and replaced |)y observed

()(atput vector y.

The N X /f mal rix WK is defined in equation (225) as

WK = IK - f_K (344)

MaJrix WrK is defined similarly in equation (2.90). After N replicat.iolr_ Ix x I\ ma.trLx W K

expands to NN x NN matrix WNK given a,s

WNK = INK -- [_NK (345)

where matrietm [_NK and [_FNK are in equations (326) and (342) and has rank M,,. Since [tYK

is ideml)ot.ent, t.hell by Lemma 7 matrLx WNK is idempotent with rank N/f- _1_.

For usr in the developmenl, define .\r/f x NN matrix GH as

I! IK ... IK

1 T 1 .
---- . .. -

GH--_H H _ I I'K ... IK
(346)

It is readily seell that G H is idempotent with rank K. By Lemma 7. matrix INK -- Gn is

idempotent with rank NN- K.

Nexl GH is shown to be a two-sided identity of any matrix of the form 1/NHTAH, in

t)articular _NK- Indeed, from equations (326) and (342),

GH_-_NK = 1HTHHT_'_KH = LHTf_K
N -' N

= --1 HT[_KHHTH .: _'_NKGH
N _

H = _NK

(347)

From equatiolLs (345) and (347),

GHWNK = WNKGH
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Therefore, ArK x NK matrix product WNKGHWNK, i-,() be used later, is idempotent. Also, il is
seen that

WNKGHWNK = (INK -- IINK)GH(INK -- '.(INK) = (GH -- _INK)(INK -- _NK)

= G H -- _INK (3,1.q)

Since GH ha.s ra.nk K and lINK has ra.nk .,'lI,,, it follows from Lemmas 5 and 6 and equation (3,19)

that, producl. WNKGHWNK ha.s rank ],, - .,'llz. Note I.ha.l K - 2_'[z > 0.

Estimated :_l,. x 1 pa,ra, llle|,er vec|,Ol" c,. NK x 1 predicted Otl|,])lll, reel,or _r and NK × 1

residual vector 6 are obta.ined wiih equations (218), (223), and (22,1), respectively, for a. tinea.r

proces'_, and eqlla.I iOllS (270), (28_)), and (289), respectively, for a nol|lilleaT process. Recall fro]n

equa.lion (224) thai, o, ca.l| }>e eXl>l'esse,.1 as

}'_ = WNK_ E (:{5())

with zero expected va.lue and ,'_:K x ,VK covariailce ma.trix o'_WNK.

Let 6,, denote the K × l residual vector at. the 7tth replica.lion, which has zero expected

vMue mid covariance lna.trix rr_WK. Then residual vector c. can be partitioned into :V, ]\ x 1

su bvecI,oi_ a.s shown below:

T

Let ei< denote the mc, a.n value of rhe set of residual vectors <3,, averaged over ,\' replications; |hal

is,

A'

1 _ 1 _ 1

_K = _E e,, = _He, : =_.HWN._Ei\,,

The residua.l sum of squa.res, denoted bv. ,'_'.s'_:,is defined in equation (231) a_,_

(352)

,_'.,'F- _T_.= _WNx_ (353)

Bv T]leol'etll 1, ,'_.s's is chi-square distributed with NK- il[_ degrees of freedom; t]le sl.andard

error of the regression given by

is 311 unbiased estimate of or.

>;'F= ( 'q"_:x f_-- M,,)

I/'.,

(3,54)
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ResiduM sum of squares £'._'t.:call be partitioned into the following sum of quadratic forms:

S.s'£' ---- _T_. --__ _TWNKGHWNK_. -F _T (INK - WNKGHWNK) _ (:{55)

B_ IlSillg equa.{ iOllS (:348) a.lld (:_)()) alld the f;tcl, thai, WNK is kleml)otenl. ,5',_,c can be expressed

_I.S

£'.s'_ = E_WNKGHWNK_E + e_WNK (INK -- GH)WNKeV

Denote the first, right-hand term in equatiOll (;3;3[)) by 5,.\- a.s follows:

,%',,.\- = _.TWNKGHWNKe : eTWNKGHWNK{E

which follows from equation (37)0) and the facl thal WNK is idollll)Olell|..

e\ l)l_'s,sed as

(a56)

,_, / \. T __ i_, _.T _K= _.EWNK GHWNKEE (a58)

h \" \

(3(5O)

where 7,,_ is the kth element of K x 1 residual vector e.,,, and _a. is the kth element of h x 1
veclor ek. Variable ,9._._t is seen 1,o equal the sum of squm'es _})out the means of lhe .set. of :¥
residual vecl, ors e'n each of dimension K x 1. It. follows from the definition of H that

5'.h'=U = _-_(e-,,- e.K)T(e,, -- e--K) = (e. -- HTeK)T( _ -- HTeK)
(aOl)

Define ,.VA x 1 vector e M _ follows and u_ equations (350) and (;352) to obtain the result,

eg ----_. -- HT_-K = e -- 1HTH_- = (INK -- GH )_

= (INK- GH)WNKeE (3B2)

6O

\.'a.rial_h" £'\- is inl.erprelx'd as t.he sta.uda.rd error due to bias uncert, ainty.

Consider next the second right-hand term of ,5'.,.:.in equalion (:_aa). Define ,q'._'_tas

(35.q)£, . )I/'.,:4'\-= Ix ----1I

which follows fi'om equations (350), (352), and (357). I1 has been shown t,hat WNKGHWNK

k'_idCml}Otenl with Ix- _11_degrees of freedom. Therefore, it follows from equa.tion (358) and

Th,'orclu 1 lhal ,qs.\-/cr_. is chi-squa.re dist.ril>ut,'d with /_ - kl,. degrees of freedon|. Define lhe

root-R,_ea.n-square value of ,q,-\ as



By using equations (360) t.o (362),

,q'.<,'_[: eTeM : _'_WNK(INK -- GH)WNKtTE (3(J3)

(!omparison of" equations (;{56) and (36;}) shows thai, ,_"._'wequals the second right-hand term of

,5'.,'F. Moreover, il is clear that lna.trix t)rodu('t

WNK(INK -- GH)WNK = WNK -- WNKGHWNK

is idelnl)otem an(l, by Lenunas ,_ and 6, has rank NN - K, since WNK has rank NN - Jl,. and

WNKGHWNK ha.s rank /i -M:. By ]'heorenl 1, ,";,,.w/c*} is ('hi-_tuare disi.ribute(t with Nil- Ix

degrees of freedom, garial)le ,q'.s'at can lye int.,'rl_reted a.,; l.lio porlion of r_i(lual sum of squares

,q'.s._ due to illea.stlrellielil, UllCertaitit, y. Th(' rool-lneall-square vahle

,<:"w = t A.'Iq - li
(3(i4)

is interpret¢,d as all estiinai,_, of l,he standard deviai, ion o F of lhe llieasllreilienl uiieerl, aiiit,y.

li follows front Theorein 7 l,ha,t, ,b'v_- a,nd ,b'_,,_: are indei)endenl,. Therefore, l,he ratio

r,-,, = [S,.,-/(I,- _4)}I[.<_'.,.,,I(M, - /,')] is /"-distributed with l(- fi'/,., .,_'K- K d%rees of
fi_edoln. The test of significance for the existence of distinct, inl)Ul' loading I)iases is as follows.

Assume as l.]le null hypotliesis that inl)ul loading bias error and modeling error are zero. Forin

t, tie ex pl'e,_sio 11

Tv,, = ,.;,<.w/( J\'K - I,. ) > /'),w<. w,-_, (") (:1($5)

If inequality (365) is satisfied, then lhe null ]lyl)oihesis that both inl)ul, loading bias error and

modeling error equal zero is rejected at, confidence level ct.

A4.4. Stationarity Test of Estimated Parameters.

A test is developed for nonstationarity of estimated individual parameter ?,,, E e over :V

replicated calibrat ions. Let i':n, ' denote i.he paranieter vector estimal.ed at. the ni.]l replication by

a K-poii: regression, with r(._idual sunl-of-_tuares S_'r¢,,, for I., = 1 ..... N. Define

'<';"<"'_'= Z SsR.,, (:i(:;f$)
t_= l

Let. c denote the I)aranleter vector estiulated by an ): K-t)o int global regression owr the conlt)lete

set, of ): replicated calibrations. To test. for stationarity of parameter c,,, replace the ml.h

element of c-n,, by" ?,,, E c. and compute resulting the error sum-of-squares, denoted by S._.r;..... for

7_ = 1 ..... N. Comput.e ,c;_.(, = _,g.s'(," ..... for n = 1 ..... N. The ratio (,b'_.(,,- ,'g.s.:¢)/,q'<

is subsequently d/own io t)e /;_-distribul,ed and t.hereby provides a test of significance for

nonstat.ionarity of the estimated value of c,,, over the N replicated calibrations.
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The null hyl)othesisassumesthat calibrationstandarderrorsand modelingerrorsarezero
and that estimaWdt)axametervectorCn,,is stationary overthe N replications. Let Nh x 1

measurement error vector en be partitioned among the N replications as [e T ...e T \]T, where eE,,
denoles l,hr K x 1 measuremen! error vector at, the nth replication. Also,'let 6()n,, denote lhr

uncertainty of the nth estimated parameter vector, which is obtained fi'om equation (28 1) as

6_n,, = -R-IF_e_,,

Thr unc_,rtainty of element ?'. ..... G cn" is seen 1o be

where pT is the mt, h row of R -I

vector _(: is given by

aml the unc_rta,inty of elemenl (_:.,,.

(367)

T FTe (36_,):?n ...... = --P .... r:,,

Similarly, the uncertainty of globally _,stimat,cd l)ara,lneter

_6(:=-1 R, -1FTHeE

E _G is

1 T T

_'(, = -_p,,,F_ HeE

(36.O)

(370)

(373)

where K x K matrLx A T T= fg,,p,,,F_ and NK x NK block diagonal matrix Ia is defined as
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_?Gn. = (IA -- _-H AH)_E

where f_,,, is the ruth column of F_.

T

[_T _T ] which can then ,)e expressed ill reFilL sLet Nh" x 1 error vector eGR,. = "(;R,..I .... (;R,,,v '

of :Vh x 1 measurement error vector en a.s

b,,'l,' ..... = c,,,P,,, ,. er_, - (372)

l¢.el)lace _. ..... t)y ?G,,, in equation (371) to obtain the error vector of the .t,h rel)lication

comt)uted with the glol)ally estimated va, lue of parameter c .... which is denoted 1)y _._,,.... . From

equa.tio_Ls (368) to (371), the difference between error vectors _: ..... and _._,, is given by

('in,, = F_n,, + en,, (371)

The residual vector of the nlh rel)lication, denoted by g_n,,, is found by ILsi.g equa.lion (288)a,s



IA ----

A 0

0 A

0 0
i] (374)

It. is seen tha.t. 1.he inner i)roduct _Trt,,,_GR,, equals (,q'_.,,.,,- ,'g.s'n). Clea.rly A has rank 1. I! follows

fro,,, equaJ.io,, (280) that pTFTf_,,, = 1. Iie,,c,',

AA= T T T T f_,,,p,,,F_ = AL,,,p,,,F_ f_,,,p,,F_ = T T

and A ks ideml)otent. 11. can then be seen tha.l IA is i(lempol.ent wilh rank :V, siilc,, A is

ideml)Otenl with ra.nk 1. Thus IA -- I/NHTAH is ide,,,potent wil.h ra.,,k (:V- 1). a.nd therefore

lhe inner l)roduc! aT a(.GR,,(.GI_. C_[I ])e exl)l'es_(] fl.,_

(375 )

It follows from Theore,n 1 l.ha.t ,q'_._:,,,- ,";'.s'r_ is chi-squaJ'e distrit)t,ted will, N - 1 (h'g,'ees of
freedonL

The residua.l sun, of squa.res of the 77t.h replica.ted regression, ,q'._'1?. = ¢T.wKEE,," ha.s been

shown a.s chi-_lua.r¢' dist.ril)uled wilh /_" - M_. degrees of free(lonL Because l.he error vecl.ors eE, '

are mut.ually indel)en(tent, il follows from equat.ion (366) and Theoren, 2 that t.l,(" tota.1 rel_lica.t,'d

sum of _tua.res ,q'._._,is chi-squa.re dislril)ule,l with N(/q-al,_)degrees of fre,,(lotn. Ther('fore, if

the following i,,equa.lil.y is sa.tisfied

( q'.,,,,,,,- ,':;,,,,¢)/ ( ,\"- 1)
T_,,,= .';',.,J[:V(,, - ,_,,.)] > Z.;,._,,. ,.(,,._,,.,(,) (a76)

then the null hypothesis ,.ha.l. 1)a.ra.,,,el.er r,,, is sta.t.io, ary is r(:iecl.ed al. confidence l¢.v,.1 (_.
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